

Contracting for Agile Software
Development in the Department of
Defense: An Introduction

Eileen Wrubel
Jon Gross

August 2015

TECHNICAL NOTE
CMU/SEI-2015-TN-006

Software Solutions Division

http://www.sei.cmu.edu

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

http://www.sei.cmu.edu

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract

No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineer-

ing Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark,

manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation,

or favoring by Carnegie Mellon University or its Software Engineering Institute.

This report was prepared for the

SEI Administrative Agent

AFLCMC/PZM

20 Schilling Circle, Bldg 1305, 3rd floor

Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING

INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON

UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR

PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE

OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,

OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted be-

low.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material

for internal use is granted, provided the copyright and “No Warranty” statements are included with all

reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distrib-

uted in written or electronic form without requesting formal permission. Permission is required for any

other external and/or commercial use. Requests for permission should be directed to the Software En-

gineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0002502

mailto:permission@sei.cmu.edu

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY i
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Table of Contents

Acknowledgments vii

Executive Summary ix

Abstract xi

1 Introduction 1

2 What is Agile? 4
2.1 The Agile Manifesto and Defining Principles 4
2.2 A Definition of Agile Software Development 6
2.3 Mapping of Manifesto to 12 Principles 6
2.4 How Does Agile Differ from Traditional Software Development Methods? 7
2.5 What Are the Benefits of Agile Methods? 11
2.6 Further Reading 12

3 The Contracting Officer, the FAR, and Agile 14
3.1 Contracting Officers and the Acquisition Team: Definitions and Authority 14
3.2 Stakeholder Objectives and Collaboration 16
3.3 Flexibility to Innovate 17

4 Incremental Development in the DoDI 5000.02 19
4.1 Software Intensive Programs, Model Program 2 19
4.2 Incrementally Deployed Programs, Model Program 3 20
4.3 Tailoring is Expected Behavior 21

5 Agile/DoD Contracting: Addressing Common Misconceptions 23
5.1 “Agile Doesn’t Produce Any/Enough Documentation” 23
5.2 “Agile Methods Don’t Offer Enough Insight” 24
5.3 “Requirements Are Too Nebulous with Agile, and That’s too Risky” 28
5.4 “Frequent Iterations Create Significant Additional Contracting Overhead” 30
5.5 “Agile Development Projects Are Not Aligned with Required Technical Reviews Under

DoDI 5000.02, so They Can’t Be Done” 32

6 Contracting Approaches 36
6.1 Contract Types 36
6.2 Cost-Reimbursement Approach for Agile Contracts 38
6.3 Firm-Fixed-Price Approach for Agile Contracts 39
6.4 GAO on Effective Practices for Agile Contracting 43
6.5 Future Work Needed 44

7 Summary 45

Appendix A: Interview Questions 46

Appendix B: SEI Publications on Agile Software Development 48

Appendix C: DAU Guidance on Contract Type Selection 50

Appendix D: Agile Glossary 53

References 57

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ii
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iii
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

List of Figures

Figure 1: Agile Versus Waterfall Software Delivery 9

Figure 2: Agile Lifecycle [Palmquist 2014] 10

Figure 3: Differing Perspectives (Adapted from Hayes [Hayes 2014]) 16

Figure 4: Model 2: Defense Unique Software Intensive Program [DoD 2015] 20

Figure 5: Model 3: Incrementally Deployed Software Intensive Program [DoD 2015] 21

Figure 6: Many Quality Touch Points in Agile Development [Hayes 2014] 25

Figure 7: Requirements and Approach, Traditional Versus Agile Software Development [U.S. CIO
2014] 29

Figure 8: Marine Corps (MC)-Agile Increment 1, 33

Figure 9: Contract Type Applications 37

Figure 10: Value-Driven Projects [Opelt 2013] 40

Figure 11: Scoping and Process Definition for an Agile Fixed-Price Contract [Opelt 2013] 42

Figure 12: Detailing the Vision [Opelt 2013] 43

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iv
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY v
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

List of Tables

Table 1: Mapping of Agile Manifesto Tenets and Supporting Principles 7

Table 2: Differences Between Agile and Waterfall [Palmquist 2014] 10

Table 3: Sample Regulatory/Policy References [Hayes 2014] 26

Table 4: Agile Reviews and Traditional Reviews 33

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY vi
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY vii
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Acknowledgments

The Software Engineering Institute (SEI) has many points of support for the development of a re-
search agenda on Agile acquisition. The SEI author team would like to express our appreciation to
all those who took time out of their busy schedules to support this effort via interviews, introduc-
tions, or providing us with resources. Their contributions were invaluable to this process.

We extend special thanks to the following individuals:

 Captain Daniel P. Taylor, United States Coast Guard (retired)

 Kelly Goshorn, former PEX Program Manager, Air Force Life Cycle Management Center
/HBBD

 David I. Gill, Contracting Officer, Internal Revenue Service

 Brad Bernard, Deputy Chief Avionics Engineer, F-22 Modernization

 many additional contributors and supporters who prefer to remain anonymous

Thanks also go to our Agile Collaboration Group members, with whom we socialized and shaped
this project, and whom provided excellent discussion and feedback on the business issues sur-
rounding contracting for Agile development. We also appreciate continued opportunities to ex-
change information and ideas through the Association for Enterprise Information (AFEI) events
focused on Agile in government.

Finally, we extend our gratitude to our supportive colleagues

 Carol Sledge

 Jeff Thieret

 Rachel Callison, our fearless research and reference librarian

 Gerald Miller, our unfailingly patient editor

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY viii
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ix
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Executive Summary

As iterative, incremental, or Agile software development methods continue to gain traction in the
software industry, more and more Department of Defense (DoD) programs are taking notice of
these methods, as a result of contractor proposals and program office staff research, outreach, and
experience. The DoDI 5000.02, published in 2015, discusses iterative software development
[DoD 2015]. Differences between Agile development lifecycles and more traditional waterfall-
based approaches surface throughout the lifecycle, requiring modifications to traditional mile-
stones, documentation, delivery, and progress monitoring activities. Contracting professionals,
however, generally do not receive professional career field training to guide them in developing
contracts that support these adaptations.

This technical note (TN) is part of the SEI’s continuing exploration of Agile in the DoD. Our
prior efforts have focused on providing tools to program office teams for successfully implement-
ing Agile methods. Throughout our data gathering for this paper, dozens of interviews conducted
for past efforts, our participation with various industry and academic groups, support to SEI cus-
tomer programs, and our interactions with our own Agile Collaboration Group1 members, we
heard a frequent refrain: program office teams do not feel that they “speak the same language” as
contracting officers with whom they must collaborate to create contracts that allow programs to
fully realize the benefits of Agile methods, while simultaneously satisfying the contracting of-
ficer’s objectives of developing fair contracts that protect government interests at an acceptable
level of risk while in compliance with federal statutory requirements and agency policy guide-
lines.

This technical note, then, is intended primarily for contracting officers. The authors provide con-
tracting officers with a basic background in Agile development principles, contrasting Agile
briefly with waterfall-based software development paradigms with which they may be familiar, as
a means to set the stage for understanding how contracting deliverables and structures may need
to adapt. We explore the Federal Acquisition Regulation (FAR) provisions that grant contracting
officers latitude to explore innovative business practices, and the collaborative support that should
be received from the program office team during the contracting process. We address the elements
of the 2015 DoDI 5000.02 that support incremental software development and the tailoring of
program activities, to allay concerns about newer lifecycle models.

We address common concerns and misconceptions about risk associated with Agile development,
supported with examples from actual programs and interpretive guidance from various federal
agencies including the Government Accountability Office (GAO), the White House Office of
Technology and Policy (OSTP), and the Office of Management and Budget (OMB). In each case,
we provide contracting officers with concrete questions and actions that they can take to evaluate
actions and deliverables proposed when developing a contract.

1 The Agile Collaboration Group is a consortium of more than 150 representatives from more than 45 organiza-

tions across the SEI, DoD, federal agencies, defense contractors, academic institutions, and private industry.

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY x
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Finally, we address overall structure of contracts: there is considerable discussion within the Agile
community about whether fixed-price or cost-reimbursable structures are preferable for Agile. We
do not attempt to divine a preferable approach: many variables affect the types of contracts that
can legally be employed on any given program. Both approaches can produce viable contracts that
effectively deliver mission capability and provide appropriate insight into cost, progress, and soft-
ware quality. Thus, we discuss both kinds of approaches and considerations that enable either type
to be used effectively.

This paper is not intended to provide detailed guidance that applies to every situation, contract
language, or substitute for legal advice. Rather, the authors hope to provide contracting officers
with a “running start” when they encounter a program that will employ Agile methods.

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xi
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Abstract

This technical note (TN), part of an ongoing Software Engineering Institute (SEI) series on Agile
in the Department of Defense (DoD), addresses effective contracting for Agile software develop-
ment. Contracting officers do not receive career field education targeted at achieving successful
outcomes with Agile software development methods. For the purposes of this TN, the SEI gath-
ered data from program office team members, contractors, and contracting officers about the state
of contracting activities involving Agile development. The authors conducted a series of inter-
views and mined past interviews and survey data on Agile software development to understand
common questions and concerns and provide some real-world examples to address them. This TN
offers a primer on Agile based on a contracting officer’s goals, describes how program office
teams need to support contracting efforts, and addresses common concerns about Agile and how
those concerns can be mitigated in the contracting process.

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xii
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

1 Introduction

In recent years the federal government and the Department of Defense (DoD) have emphasized
the necessity to shorten acquisition timelines to be more responsive to increasing operating tempo
and warfighter need for more rapid capability development [OSD 2010, Lapham 2011]. In 2009,
the Defense Science Board wrote that “The fundamental problem DoD faces is that the deliberate
process through which weapon systems and information technology are acquired does not match
the speed at which new IT capabilities are being introduced in today’s information age” [Defense
Science Board 2009].

Additionally, requirements for any given system are highly likely to evolve between the develop-
ment of a system concept and the time at which the system is operationally deployed as new
threats, vulnerabilities, technologies, and conditions emerge, and users adapt their understanding
of their needs as system development progresses. Dr. Matthew Kennedy, formerly of the Defense
Acquisition University (DAU), wrote that “Previous experience shows that changes within an SIS
[software-intensive system] are inevitable, whether or not there are changes in requirements or
technology” [Kennedy 2011]. With budgets constrained, ops tempos increasing, and requirements
perpetually evolving, software development and acquisition practices must evolve in a way that
facilitates faster capability deployment and flexibility in approaching system requirements.

Iterative, incremental software development methodologies commonly referred to as “Agile”
methods have been gaining ground in efforts throughout the DoD and federal agencies as a means
to achieving these objectives for the acquisition of software-intensive systems and improving vis-
ibility into development execution to enable early detection of problems that can derail programs.

We have consistently written about cultural and behavioral shifts required on the part of program
office teams and acquisition leadership to support the employment of Agile techniques [Lapham
2010, Lapham 2011, Lapham 2014, Wrubel 2014]. DoD contracting officers and program manag-
ers, while fulfilling critical roles in the acquisition process, approach the issues of software-inten-
sive system development through different lenses. A program manager is responsible for the de-
velopment and delivery of a system that meets mission needs; a contracting officer is responsible
for ensuring that the contractual vehicles employed to meet those mission needs are in compliance
with federal statutory requirements and agency policy guidelines. According to the Federal Acqui-
sition Regulation (FAR) (Part 1.102-1 (b)),

All participants in the System are responsible for making acquisition decisions that deliver
the best value product or service to the customer. Best value must be viewed from a broad
perspective and is achieved by balancing the many competing interests in the System. The
result is a system which works better and costs less [FAR 2015, emphasis added].

Both program managers and contracting officers have different perspectives on “best value” as it
pertains to their role in the process, and both must manage competing objectives such as risk (e.g.,
technical, financial, information), cost, schedule, desires for flexibility versus desires for predicta-
bility, socioeconomic factors in contracting, and a wide variety of other factors. The contracting

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

officer must ensure that while a contract is in the best interest of the United States government, it
also provides “impartial, fair and equitable treatment”1 to contractors.

Throughout the SEI’s multi-year efforts to address adoption enablers for and barriers to Agile in
DoD programs, program managers and engineering staff have frequently indicated that putting ef-
fective contracts in place to support Agile methods remains challenging, citing a communication
barrier with their contracting officer counterparts: “We don’t speak their language, and they don’t
speak ours.”2 In other words, program office teams are having difficulty communicating their
“best value” scenarios and achieving alignment with the contracting officer’s “best value” scenar-
ios.

Currently, no formal Agile-related career-field education exists for DoD contracting officers.
While Agile methods are explored in the curriculum at Defense Acquisition University, this is
within the scope of IT career field coursework.3 Most of our respondents indicated that contract-
ing officers assigned to their contracts had little or no prior exposure to Agile software develop-
ment efforts and had little opportunity to receive training from other sources—many of them
learned “on the job” alongside their program office counterparts. Contracting officers with whom
we spoke mirrored this assessment—they had little to no professional exposure to contracting for
iterative, incremental software development methods prior to being tasked with supporting these
acquisitions.

With the understanding that contracting officers typically come across Agile “cold,” the purpose
of this technical note is to introduce Agile concepts and principles to contracting officers and link
those concepts and principles to supporting federal and DoD publications and elements of the
FAR. Understanding the underlying principles and framework for Agile is necessary for an under-
standing of the level of specificity at which requirements are documented and the level of involve-
ment of the program office in development activities, determining what deliverables are necessary
on a contract, and understanding how to monitor progress and quality of the software produced
during the contract. We also address common misperceptions about the risk associated with lever-
aging Agile methods on DoD contracts, and successful examples from real programs.

The contracting community is a critical leader in the adoption of new innovation in the acquisition
of new capability or services for the DoD. The program manager is a key role, both in leading the
program to meeting user/warfighter needs and helping the contracting officer establish effective
contracts “that deliver the best value product or service to the customer” [FAR 2015]. The authors
intend to provide some initial knowledge of Agile methods and how they affect and are affected
by contracts, so that the contracting officer can help improve government business practices to en-
sure more effective delivery of capability. We also intend to provide program managers with per-
spective on the support contracting officers will require to develop effective contracts for Agile
development.

1 FAR (Part 1.602-2)

2 Interview respondent

3 Reports from interview respondents, and also in AFEI 2012 Agile in Defense Fall Workshop [AFEI 2012]

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Section 2 provides the contracting officer with a basic understanding of Agile methods and how
the Agile lifecycle is different from traditional approaches.

Section 3 delves into the role of contracting officers, program office teams, and the Federal Ac-
quisition Regulation.

Section 4 identifies elements of DoD acquisition guidance that support the implementation of Ag-
ile methods where appropriate.

Section 5 addresses common misconceptions about Agile methods and provides contracting offic-
ers with both examples from real programs and questions contracting officers should pursue to set
up contracts that will successfully leverage Agile efforts.

Section 6 discusses how Agile methods can be supported using either fixed-price or cost-based
contracts.

The appendices to this document provide additional reference material on Agile software develop-
ment in the DoD and the research questions that guided our interview efforts.

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

2 What is Agile?

It is important to understand that Agile4 is not one specific method; Agile software development is
both a philosophy and an umbrella term for a collection of methods or approaches that share com-
mon characteristics.5 To arrive at a brief working definition, we must first introduce the underly-
ing tenets and principles. (Appendix B of this document contains a list of additional SEI publica-
tions on using Agile methods in the DoD; Appendix D of this document contains a glossary of
common Agile terms used throughout this technical note.)

2.1 The Agile Manifesto and Defining Principles

The Agile Alliance provides some background on the genesis of Agile methods:

In the late 1990’s several methodologies began to get increasing public attention. Each had
a different combination of old ideas, new ideas, and transmuted old ideas. But they all em-
phasized close collaboration between the programmer team and business experts; face-to-
face communication (as more efficient than written documentation); frequent delivery of new
deployable business value; tight, self-organizing teams; and ways to craft the code and the
team such that the inevitable requirements churn was not a crisis [Agile Alliance 2001c].

A group of software industry practitioners and consultants, who became known as the Agile Alliance, de-
veloped and published key tenets known as the Manifesto for Agile Software Development [Agile Alli-
ance 2001]:

4 When using the term “Agile” throughout this paper, the authors refer to software development conducted ac-

cording to principles and practices consistent with the Agile Manifesto and the Agile principles, using the defini-
tion provided in Section 2.2.

5 Palmquist offers a more thorough discussion of the similarities and differences between waterfall-based devel-
opment and Agile development [Palmquist 2014].

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right,
we value the items on the left more.

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

It is important to note that none of the elements on the right side of the list are absent; rather, they
support and add value to the elements on the left side of the list:

 Tools and processes facilitate interactions between team members, as opposed to shoehorning
these interactions into molds and patterns for the sake of process compliance.

 Documentation is developed to add value to development and sustainment of the code, rather
than as evidence to prove compliance or completion.

 Contract negotiations must establish a collaborative work environment that enables effective
decision-making and flexible response, rather than high-overhead change control processes.
(This can also include early termination points to limit government risk for poor perfor-
mance.)

 High-level plans must be flexible to allow for necessary evolution of system requirements;
plans become more granular at the development level.

The Agile Alliance also documented 12 principles that underlie the tenets in the manifesto [Agile
Alliance 2001b]:

We follow these principles:

1. Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile
processes harness change for the customer's competitive ad-
vantage.

3. Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.

4. Business people and developers must work together daily
throughout the project.

5. Build projects around motivated individuals. Give them the envi-
ronment and support they need, and trust them to get the job
done.

6. The most efficient and effective method of conveying information
to and within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace
indefinitely.

9. Continuous attention to technical excellence and good design en-
hances agility.

10. Simplicity—the art of maximizing the amount of work not done—is
essential.

11. The best architectures, requirements, and designs emerge from
self-organizing teams.

12. At regular intervals, the team reflects on how to become more ef-
fective, then tunes and adjusts its behavior accordingly.

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

With this basic understanding of the philosophy of Agile development, we can move on to under-
standing what happens in practice. This understanding will provide a foundation for understand-
ing how the Agile-based development model behaves differently from traditional waterfall-based
development models, and how those differences manifest themselves in program execution.

2.2 A Definition of Agile Software Development

Distilling the guidance from the tenets of the manifesto and the 12 supporting principles, one solid
definition of Agile is

An iterative and incremental (evolutionary) approach to software development which is per-
formed in a highly collaborative manner by self-organizing teams within an effective govern-
ance framework with “just enough” ceremony that produces high quality software in a cost
effective and timely manner which meets the changing needs of its stakeholders [Ambler
2004].

We can extend this definition by describing the behavior of an Agile team, as follows:

In Agile terms, an Agile team is a self-organizing cross-functional team that delivers work-
ing software, based on requirements expressed commonly as user stories, within a short
timeframe (usually 2-4 weeks). The user stories often belong to a larger defined set of stories
that may scope a release, often called an epic. The short timeframe is usually called an itera-
tion or, in Scrum6-based teams, a sprint; multiple iterations make up a release. The team’s
progress toward completion of the iteration is measured via the team’s velocity. While the
code produced within an iteration is useable, it may not have enough functionality to be re-
leased to the end user until the multiple iterations that make up a release are completed
[Lapham 2011].

Agile methods involve successive iterations of software development, each iteration producing
working software, and enough documentation to develop and support the associated code base.
Understanding how Agile teams produce code allows us to understand how acquisition and con-
tracting guidance must be adapted.

Throughout the rest of this paper, when using the term “Agile,” the authors refer to software de-
velopment conducted according to principles and practices consistent with the Agile Manifesto
and the Agile principles, using the definition provided in this section.

2.3 Mapping of Manifesto to 12 Principles

We can map the tenets of the Agile Manifesto to the 12 supporting principles (some principles are
mapped more than once). Items highlighted in bold italic in Table 1 are of special note for con-
tracting officers and are themes consistently addressed throughout this technical note.

6 http://www.mountaingoatsoftware.com/agile/scrum

http://www.mountaingoatsoftware.com/agile/scrum

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Table 1: Mapping of Agile Manifesto Tenets and Supporting Principles

Tenets Principles

Individuals and interactions over
processes and tools

4. Business people and developers must work together daily
throughout the project.

5. Build projects around motivated individuals. Give them the environ-
ment and support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation.

8. Agile processes promote sustainable development. The sponsors, de-
velopers, and users should be able to maintain a constant pace indefi-
nitely.

11. The best architectures, requirements, and designs emerge from self-
organizing teams.

Working software over compre-
hensive documentation

1. Our highest priority is to satisfy the customer through early and contin-
uous delivery of valuable software.

3. Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.

7. Working software is the primary measure of progress.

9. Continuous attention to technical excellence and good design en-
hances agility.

10. Simplicity—the art of maximizing the amount of work not done—
is essential.

Customer collaboration over con-
tract negotiation

1. Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

4. Business people and developers must work together daily
throughout the project.

6. The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation.

8. Agile processes promote sustainable development. The sponsors, de-
velopers, and users should be able to maintain a constant pace indefi-
nitely.

Responding to change over fol-
lowing a plan

2. Welcome changing requirements, even late in development. Agile
processes harness change for the customer's competitive ad-
vantage.

9. Continuous attention to technical excellence and good design en-
hances agility.

12. At regular intervals, the team reflects on how to become more effec-
tive, then tunes and adjusts its behavior accordingly.

2.4 How Does Agile Differ from Traditional Software Development
Methods?

Contracting officers on DoD programs are likely to be familiar with phased approaches to soft-
ware development (such as waterfall): system requirements are thoroughly documented and pro-
vided to a contractor, and the software development progresses through distinct phases of design,
development, and test, resulting in a final delivery of completed software. A rigorous Engineering
Change Proposal (ECP) process is implemented to tightly control any changes to requirements or
design, generally requiring a contractual action. In the acquisition process, the software develop-
ment phases map to milestone reviews such as the Preliminary Design Review (PDR), Critical

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Design Review (CDR), etc. Each milestone must be met before progressing further with design,
coding, and test.

Under Agile,7 an exhaustive set of requirements is not locked down at the start of the program.
Rather, Agile development assumes that system and software requirements will evolve over time,
rather than be definitized prior to system development. With Agile, high-level vision for the sys-
tem is defined up front,8 but specific requirements are fixed at the iteration (or “sprint”) level ac-
cording to an established cadence. The development team and user representative (generally re-
ferred to as a “product owner”) agree to a set of requirements to accomplish during the defined
time interval associated with the iteration. This serves to time-box the delivery of software: incre-
ments are completed on a regular, predictable basis. At the end of a sprint or increment, priori-
tized software requirements are agreed to for the next development iteration. The understanding
of the user requirements evolves, guided by the high-level vision (or roadmap), as the software
product continues to be developed (see Figure 2 for a graphic representation).

The development team’s capacity for execution (typically referred to as velocity9) is used as a
boundary for the number of stories to which the team commits during any given iteration. Re-
quirements refinement, design, development, and testing are all completed within the scope of the
increment. Testers and other specialists10 are either members of the development team, or working
in very close coordination. When the working software is completed at the end of each iteration,
the development team and the product owner can readily assess that the increment has achieved
functional and quality commitments as described in the requirements agreed to for that iteration.
The code delivered at the end of each iteration is production-quality code.

It is important to note that “delivery” and “deployment” of software products developed under
Agile methods are not synonymous. Code fielding is not required at the completion of each incre-
ment or even after several increments (see Figure 2—in this example production quality code is
delivered at the end of each iteration, but deployed only as key capabilities are available and suita-
ble for fielding at the release level). However, as each iteration is developed, production-quality
code is built upon.

Figure 1, excerpted from the GAO’s 2012 report, Effective Practices and Federal Challenges in
Applying Agile Methods, provides a good high-level visualization of the differences between the
Agile approach and a more traditional waterfall-oriented approach [GAO 2012].

7 Appendix D contains a glossary of Agile terms.

8 The system under development may be exclusively software being developed by the Agile team, or the soft-
ware may be a part of a broader system.

9 Velocity measures are unique to a software team, derived from historical data about that team’s performance.
As such, velocity is useful in allocating work to a software increment, for a particular team under local condi-
tions, but is not an effective tool for comparisons or work allocation across different teams [Sliger 2008, Hayes
2014].

10 Such as certification and accreditation representatives

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 1: Agile Versus Waterfall Software Delivery

Figure 2 provides a more detailed overview of the Agile lifecycle showing how individual itera-
tions comprise releases. The roadmap represents the vision and overall direction of the program.
The product backlog represents high-level requirements, which are then refined during each de-
velopment sprint. The grey arrows in the diagram represent the continuous, collaborative involve-
ment of critical stakeholders. Progress along the roadmap is achieved incrementally, with produc-
tion quality code delivered at defined intervals. Depending on the mission needs, the government
may choose to deploy interim releases that contain militarily useful capabilities.

(Section 2.6 provides additional resources for gaining more in-depth insight into Agile develop-
ment, and Appendix D provides a glossary of some common Agile terms used in this technical
note.)

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

1

Sprint Backlog
(Highest Priority

Requirements from the
Release 1 Backlog)

Iteration 1
(Ex. - 3 weeks)

Iteration X
(Ex. - 3 weeks)

Sprint Backlog
(Highest Priority

Requirements Remaining in
the Release 1 Backlog)

Iteration 1
(Ex. - 3 weeks)

Sprint Backlog
(Highest Priority

Requirements from the
Release2 Backlog)

Iteration X
(Ex. - 3 weeks)

Sprint Backlog
(Highest Priority

Requirements Remaining in
the Release 2 Backlog)

Iteration 1
(Ex. - 3 weeks)

Sprint Backlog
(Highest Priority

Requirements from the
Release X Backlog)

Iteration X
(Ex. - 3 weeks)

Sprint Backlog
(Highest Priority

Requirements Remaining in
the Release X Backlog)

Daily Work Daily Work Daily Work Daily Work Daily Work Daily Work

Release Backlog
(Highest Priority Requirements in the Product

Backlog)

Release 1 Release 2 Release X …

Release Backlog
(Highest Priority Requirements Remaining in the

Product Backlog)

Release Backlog
(Highest Priority Requirements Remaining in

the Product Backlog)

Roadmap

Militarily
Useful

Capability

Militarily
Useful

Capability

1

2

3

Militarily
Useful

Capability

Product Backlog
(Requirements

Generation)

1

2

3

1

2

3

Significant User Involvement With Continuous Integration and Test (Developmental, Operational, Interoperability, Security – Test Driven Development)

Significant User Involvement With Frequent Retrospectives and Reviews (Daily Meetings, Sprint Retrospective(s), Release Retrospective(s), Project Review)

Significant User Involvement With Disciplined Planning (Product Vision, Product Roadmap, Release Plan(s), Sprint or Iteration Plan(s), Daily Commitment)

Figure 2: Agile Lifecycle [Palmquist 2014]

In Parallel Worlds: Agile and Waterfall Differences and Similarities, Palmquist addresses how
these lifecycle differences between waterfall-based and Agile approaches may appear in program
execution [Palmquist 2014]. Requirements are fixed at a more granular level; reviews of the work
product happen more frequently and assess each individual increment rather than a “big bang” de-
velopment. Table 2 contrasts the two approaches at a high level. Additional detail can be found in
Palmquist.

Table 2: Differences Between Agile and Waterfall [Palmquist 2014]

Traditional Principles Agile Instantiation

Plan the work—especially the budget,
schedule, and deliverables—to the
maximum extent possible before
beginning any design or code.

 Near-term plans contain more detail, while plans further
out on the time horizon contain fewer details.

 The overall vision is broken down into a roadmap,
which is further broken down into release plans, which
are further broken down into sprint or iteration plans,
which are further broken down into daily plans.

 Requirements are prioritized.
 Cost and schedule estimates are prepared for each

capability at a high level. Relative estimation versus
absolute estimation is employed.

 Frequent planning sessions (at the beginning of each
iteration) result in detailed, high-fidelity plans.

 Risks are assessed and risk mitigation influences
planning.

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Traditional Principles Agile Instantiation

Lock down requirements to prevent gold-
plating and scope creep.

 No requirements can be added to an iteration once it
has started.

 New requirements are evaluated by the stakeholders
and prioritized thus preventing gold-plating and scope
creep.

Institute multiple reviews to provide senior
leadership oversight as well as to serve as
gates for continued work.

 The customer is involved in all aspects of planning and
testing. The customer (in the form of the product
owner) is involved daily.

 There are reviews at the end of each iteration that
serve as gates to further work.

Move forward in a step-by-step, sequential
manner and only when all parts of the
previous steps were complete.

 The code base is integrated and tested daily.
 The code base must pass all tests before and after

integration. Regression testing is typically done each
night.

Capture all details with extensive
documentation.

 There is an overall plan.
 There are requirements descriptions.
 There are cost and schedule estimates.
 There are risk assessments.
 There is training material (as appropriate).
 There is documentation (as appropriate).
 There are lessons learned (based on retrospectives).

Metrics are also treated differently between traditional and Agile approaches. Section 4.2 dis-
cusses some of the metric differences.

2.5 What Are the Benefits of Agile Methods?11

Agile methods show greater promise in enabling organizations to adjust to changing requirements
and rapidly field software as compared to other development approaches such as the waterfall ap-
proach. In contrast to waterfall-based projects, Agile seeks to deliver small but functioning soft-
ware in increments that eventually build up to the full desired capability. In this manner, users (or
their representatives) can begin to interact with the software system earlier. Users receive some
minimal capability early rather than waiting until the end of the entire waterfall lifecycle to re-
ceive any working software. This can reduce lifecycle costs by eliminating the development of
unnecessary and unwanted features. Additional benefits seen from using Agile methods include

 early insight by the users into the actual design and implementation of the solution

 the ability to modify requirements and priorities throughout the lifecycle allows for flexibility
to adapt to a changing environment

 opportunities to potentially deploy the solution in stages, putting capability in warfighter
hands sooner, while delaying less critical functionality to later releases

 opportunities to “fail fast” and make timely adjustments if the early solution ideas turn out to
be flawed; little time or money is spent before that learning occurs, and redirection can be im-
plemented (this includes early opportunities to address performance problems with contrac-
tors)

11 The material in Section 2.5 was reproduced in its entirety from Innovative Contracting Case Studies, a report of

the White House Office of Science and Technology Policy [OSTP 2014].

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 an explicit understanding on the part of the development and acquiring organizations that the
requirements are expected to evolve and are a natural part of software development and en-
suring value is delivered to the customer [Highsmith 2000, Nidiffer 2014, Kennedy 2011].

2.6 Further Reading

While a basic background on Agile approaches is necessary for further discussion, the objective
of this paper is not to provide a comprehensive definition of Agile terms and lifecycle compo-
nents. The resources documented in this section provide foundational knowledge on Agile meth-
ods, which will aid in discussing and applying the concepts described in this paper.

There is considerable literature available to further enhance one’s understanding of the specific
elements of Agile. In developing definitions and figures, the SEI drew from a number of sources
including the following:

1. http://www.agilealliance.org/the-alliance/what-is-agile/

2. http://www.aspe-sdlc.com (Agile Glossary: Words and Terms Common to Agile Methods)

3. http://www.telerik.com/agile-project-management-tools/agile-resources/vocabulary.aspx

4. http://www.accurev.com/wiki/agile-glosssary

5. http://www.develop.com/agiledemystified

The SEI’s report, Parallel Worlds: Agile and Waterfall Differences and Similarities, provides
more detailed assessment of similarities and differences between Agile and traditional methods
[Palmquist 2014]. A list of SEI publications on leveraging Agile software development in the ac-
quisition environment is provided in Appendix B.

The U.S. chief information officer (CIO) is continuing to help encourage a change in the way the
federal government acquires information technology (IT).12 In 2010, the 25 Point Implementation
Plan started a cultural shift in U.S. government approaches to IT.13 In August 2014, the U.S. CIO
announced the release for public comment of two publications that will continue the encourage-
ment of a culture change in the federal government to improve and simplify the modernization of
government acquisition: the Digital Services Playbook and the TechFAR Handbook [U.S. CIO
2014]. The support for culture change in federal IT acquisition and development continues.

This specific work on contracting for Agile software development is heavily influenced by the
work done in the United Kingdom and the European community on contracting for Agile ap-
proaches to software development. Two key publications are very valuable resources for more de-
tailed treatment of the legal and contracting approaches. The publications are

 Practices for Scaling Lean & Agile Development: Large, Multisite, & Offshore Product De-
velopment with Large-Scale Scrum. Tom Arbogast, Craig Larman, and Bas Vodde.
http://www.agilecontracts.org [Arbogast 2012]

12 https://cio.gov/

13 https://www.dhs.gov/sites/default/files/publications/digital-strategy/25-point-implementation-plan-to-reform-fed-
eral-it.pdf

http://www.agilealliance.org/the-alliance/what-is-agile/
http://www.aspe-sdlc.com
http://www.telerik.com/agile-project-management-tools/agile-resources/vocabulary.aspx
http://www.accurev.com/wiki/agile-glosssary
http://www.develop.com/agiledemystified
http://www.agilecontracts.org
https://cio.gov/
https://www.dhs.gov/sites/default/files/publications/digital-strategy/25-point-implementation-plan-to-reform-fed-eral-it.pdf
https://www.dhs.gov/sites/default/files/publications/digital-strategy/25-point-implementation-plan-to-reform-fed-eral-it.pdf
https://www.dhs.gov/sites/default/files/publications/digital-strategy/25-point-implementation-plan-to-reform-fed-eral-it.pdf

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Agile Contracts. Creating and Managing Successful Projects with Scrum. Andreas Opelt, Bo-
ris Gloger, Wolfgang Pfarl, Ralf Mittermayr.
http://onlinelibrary.wiley.com/book/10.1002/9781118640067 [Opelt 2013]

Both of these books are written within the European legal context, but provide valuable insights
for any contracting officer or their contracting officer representative.

In the next section, we discuss the role of the contracting officer and the program office, in addi-
tion to elements within the FAR that support innovation and collaboration consistent with Agile
approaches.

http://onlinelibrary.wiley.com/book/10.1002/9781118640067

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3 The Contracting Officer, the FAR, and Agile

The contracting officer, by his or her responsibility and authority, falls squarely in the middle of
defining the appropriate balance between the two sides of the Agile software development mani-
festo tenet “Customer collaboration over contract negotiation.” This balance must be established
by both the contract and the trust that builds up by effective performance of the program office
and the contractor. The contract governing Agile development must provide sufficient structure to
protect all parties and achieve the desired mission outcomes, while offering flexibility for adapta-
tion of software requirements within the agreed-on scope of the system. In this section we briefly
discuss the responsibilities of the contracting officer and the acquisition team and how the expec-
tations set forth in the FAR align with principles and tenets of Agile development. We also dis-
cuss the FAR’s emphasis on flexibility to support innovation in business practices.

3.1 Contracting Officers and the Acquisition Team: Definitions and
Authority

The contracting officer is a critical leader in the FAR System,14 as a key member of the acquisi-
tion team with a unique responsibility: “Contracts may be entered into and signed on behalf of the
Government only by contracting officers.”15 It is important to understand the specific authority
and responsibility of contracting officers from the FAR. The specifics will help focus on the needs
of the contracting officer in contracting for software development according to Agile principles.

FAR 1.602-1 Authority.

(a) Contracting officers have authority to enter into, administer, or terminate contracts and
make related determinations and findings. Contracting officers may bind the Government
only to the extent of the authority delegated to them. Contracting officers shall receive
from the appointing authority (see 1.603-1) clear instructions in writing regarding the
limits of their authority. Information on the limits of the contracting officers’ authority
shall be readily available to the public and agency personnel.

(b) No contract shall be entered into unless the contracting officer ensures that all require-
ments of law, executive orders, regulations, and all other applicable procedures, in-
cluding clearances and approvals, have been met [FAR 2015, emphasis added].

Taking a look at the FAR definition of the roles of Acquisition Team16 members helps to lay the
foundation for how a contracting officer can think about building effective contracts for Agile
software development.

14 For the Department of Defense, Defense Federal Acquisition Regulation Supplement (DFARS) are the guiding

policy. The DFARS provides DoD implementation and supplementation of the FAR. The DFARS contains re-
quirements of law, DoD-wide policies, delegations of FAR authorities, deviations from FAR requirements, and
policies and procedures that have a significant effect on the public.

15 FAR Subpart 1.6—Career Development, Contracting Authority, and Responsibilities; 1.601 General.

16 “The Acquisition Team consists of all participants in Government acquisition including not only representatives
of the technical, supply, and procurement communities but also the customers they serve, and the contractors
who provide the products and services” [FAR 2015].

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

1.102-4 Role of the Acquisition Team.

(a) Government members of the Team must be empowered to make acquisition decisions
within their areas of responsibility, including selection, negotiation, and administration
of contracts consistent with the Guiding Principles. In particular, the contracting officer
must have the authority to the maximum extent practicable and consistent with law, to de-
termine the application of rules, regulations, and policies, on a specific contract.

(b) The authority to make decisions and the accountability for the decisions made will be del-
egated to the lowest level within the System, consistent with law.

(c) The Team must be prepared to perform the functions and duties assigned. The Govern-
ment is committed to provide training, professional development, and other resources
necessary for maintaining and improving the knowledge, skills, and abilities for all Gov-
ernment participants on the Team, both with regard to their particular area of responsi-
bility within the System, and their respective role as a team member. The contractor com-
munity is encouraged to do likewise.

(d) The System will foster cooperative relationships between the Government and its con-
tractors consistent with its overriding responsibility to the taxpayers.

(e) The FAR outlines procurement policies and procedures that are used by members of the
Acquisition Team. If a policy or procedure, or a particular strategy or practice, is in the
best interest of the Government and is not specifically addressed in the FAR, nor prohib-
ited by law (statute or case law), Executive order or other regulation, Government mem-
bers of the Team should not assume it is prohibited. Rather, absence of direction should
be interpreted as permitting the Team to innovate and use sound business judgment that
is otherwise consistent with law and within the limits of their authority. Contracting of-
ficers should take the lead in encouraging business process innovations and ensuring
that business decisions are sound [FAR 2015, emphasis added].

Contracting officers, then, are encouraged by the FAR to adapt business practices to support inno-
vative methods and techniques, so far as those adaptations are consistent with the FAR, federal
law, and agency policy and regulation. The other members of the Acquisition Team need to pro-
vide the contracting officer with the resources, information, and support required to do so. The
system itself encourages cooperative, collaborative relationships between the parties and the dele-
gation of decision-making. The Agile Manifesto and the 12 supporting principles emphasize col-
laboration between the parties, consistent with the FAR. The FAR emphasis on making decisions
at the lowest level (within the constraints of the law) is also consistent with the collaborative em-
phasis of Agile software development and its iterative approach to the discovery and evolution of
system requirements.

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 3: Differing Perspectives (Adapted from Hayes [Hayes 2014])

3.2 Stakeholder Objectives and Collaboration

The focus of the contracting officer responsibility is not only about the mission or the business
needs. The contracting officer is dependent on the program office, both prior to and after contract
award. The flow of requirements and needs comes through the program office. Regardless of the
software development approach preferred by the program office, the legal and regulatory environ-
ment is unchanged for the contracting officer. When contracting for Agile software development
efforts, the contractual agreements must fit into the same legal and regulatory framework that tra-
ditional acquisition programs fit. Of course, the chosen Agile software development approach
does not override these requirements on a contracting officer; we will demonstrate through this
paper that Agile principles also do not inherently conflict with a contracting officer’s responsibili-
ties. The Agile software development focus on delivery of “working software” and “customer col-
laboration” enable the contracting officer to monitor, administer, and even terminate the contract
as provided under the law.

The program office likewise is dependent on the contracting officer to ensure an effective contract
is put in place to accomplish the mission and business needs. As we discussed previously, the
contracting officer must act in the best interest of the government while balancing a variety of
competing interests.

The specific requirement on a contracting office is to ensure all legal requirements, procedures,
and approvals have been met before awarding the contract. The contracting officer needs the sup-
port of subject matter experts across the acquisition team to satisfy this sweeping requirement.
FAR 1.602-2(c) requires the contracting officer to obtain support from all specialists necessary for

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

meeting responsibilities for “effective contracting, ensuring compliance with the terms of the con-
tract, and safeguarding the interests of the United States in its contractual relationships.”17

This support for the contracting officer is analogous to the multi-disciplinary approach to Agile
teaming discussed earlier. Throughout the Agile software development process, the multidiscipli-
nary team works together to develop the software incrementally: software engineers engage with
information security agencies, test groups, operational specialists (users), and other stakeholders
on a continuous basis. The program office team should also be engaged on an ongoing basis with
subject matter experts that overlap with those required to support contract development. Integrat-
ing those personnel/functions into the discovery process that supports the contracting officer’s
work should be straightforward and ensure that the legal/contracting objectives are aligned with
the mission objectives of the program.

3.3 Flexibility to Innovate

As we continue to review the FAR, we see again that it encourages behaviors consistent with Ag-
ile principles:

FAR 1.602-2 Responsibilities.

Contracting officers are responsible for ensuring performance of all necessary actions for
effective contracting, ensuring compliance with the terms of the contract, and safeguarding
the interests of the United States in its contractual relationships. In order to perform these
responsibilities, contracting officers should be allowed wide latitude to exercise business
judgment [FAR 2015, emphasis added].

Contracting officers should be able to use their good professional judgment about contract vehi-
cles, terms, and incentives that make the most sense to get the best value outcome for the govern-
ment. Many individuals we encountered in the course of our interviews for this paper, and our
other research efforts, have indicated that contracting officers can find their options regarding
contract types curtailed by local agency policy. When this is the case, contracting officers and
their supporting program managers should work within the confines of that guidance to determine
what additional features of the contract might afford flexibility to most appropriately meet the
mission needs of the program, as provided by the FAR.

The FAR (Part 1.102 (d)) provides important flexibility:

The role of each member of the Acquisition Team is to exercise personal initiative and sound
business judgment in providing the best value product or service to meet the customer’s
needs. In exercising initiative, Government members of the Acquisition Team may assume
if a specific strategy, practice, policy or procedure is in the best interests of the Govern-
ment and is not addressed in the FAR, nor prohibited by law (statute or case law), Execu-
tive order or other regulation, that the strategy, practice, policy or procedure is a permissi-
ble exercise of authority [FAR 2015, emphasis added].

To help the program be successful in an Agile software development contract, program managers
must realize that contracting professionals need support that demonstrates the actions and out-

17 FAR 1.602-2 Responsibilities

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

comes desired both meet the mission needs and are consistent with all appropriate statutory, regu-
latory, and policy requirements. Contracting officers must exercise the latitude within the FAR to
achieve these objectives when software is developed in an Agile manner. The role of the program
office needs to shift to include helping to ensure that a successful contract can be awarded. Only
through a successful contract, that supports Agile software development, can the mission and
business needs be satisfied.

In the following section, we address the elements of the newest revision of DoDI 5000.02 that
support iterative software development (such as Agile software development) and the tailoring of
acquisition processes to support such implementations.

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

4 Incremental Development in the DoDI 5000.02

Contracting officers can find support for leveraging Agile software development methods in the
current DoDI 5000.02, released in January 2015. While the new guidance does not name any spe-
cific development methodology (such as Agile), its guidance supports both iterative software de-
velopment and the adaptation of business processes in the acquisition program that are commen-
surate with iterative software development approaches.

DoDI 5000.02 now includes illustrative models of programs, based on predominant characteris-
tics, and advises acquisition personnel to “use the models as a starting point for structuring unique
programs” [DoD 2015]. It also makes clear that incremental approaches are not limited simply to
IT systems, but can be utilized on weapon system and other hardware/software hybrid programs.
Model Programs 2 and 3 and Hybrid Model Programs A and B embrace these approaches, empha-
sizing

 small, testable builds with agreed-to definitions of “done” (also see Appendix D)

 each build features testable functionality that demonstrates progress

In this section we will highlight Agile-friendly provisions in the model programs and tailoring
guidelines from DoDI 5000.02.

4.1 Software Intensive Programs, Model Program 2

Model Program 2, Defense Unique Software Intensive Program is characterized as

dominated by the need to develop a complex, usually defense unique, software program that
will not be deployed until several software builds have been completed. The central feature
of this model is the planned software builds – a series of testable, integrated subsets of the
overall capability – which together with clearly defined decision criteria, ensure adequate
progress is being made before fully committing to subsequent builds.

1. Examples of this type of product include military unique command and control systems
and significant upgrades to the combat systems found on major weapons systems such as
surface combatants and tactical aircraft.

2. Several software builds are typically necessary to achieve a deployable capability. Each
build has allocated requirements, resources, and scheduled testing to align dependencies
with subsequent builds and to produce testable functionality to ensure that progress is
being achieved. The build sequencing should be logically structured to flow the work-
force from effort to effort smoothly and efficiently, while reducing overall cost and sched-
ule risk for the program [DoD 2015, emphasis added].

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 4: Model 2: Defense Unique Software Intensive Program [DoD 2015]

Figure 4, reproduced from DoDI 5000.02, demonstrates Model Program 2. Model 2 emphasizes
multiple software builds to achieve deployable capabilities, but the software is still fielded in a
single deployment. In the case of tactical aircraft, for example, avionics software cannot be
fielded to deliver military capability without the rest of the system (the aircraft itself). Even
though the software is not deployed throughout the lifecycle, the multiple small increments allow
the program to monitor progress and quality, incrementally integrate and test software, and facili-
tate early identification of any software-related risks. This in turn reduces integration risk with the
other components of the platform.

4.2 Incrementally Deployed Programs, Model Program 3

Model Program 3, Incrementally Deployed Software Intensive Program (shown in Figure 5 be-
low), is described as a program that will deploy multiple increments over time, as typically seen
in IT systems.

It also applies to upgrades to some command and control systems or weapons systems soft-
ware where deployment of the full capability will occur in multiple increments as new capa-
bility is developed and delivered, nominally in 1- to 2-year cycles. The period of each incre-
ment should not be arbitrarily constrained. The length of each increment and the number
of deployable increments should be tailored and based on the logical progression of devel-
opment and deployment for use in the field for the specific product being acquired.

1. This model is distinguished from the previous model by the rapid delivery of capability
through multiple acquisition increments, each of which provides part of the overall re-
quired program capability. Each increment may have several limited deployments; each
deployment will result from a specific build and provide the user with a mature and
tested sub-element of the overall incremental capability. Several builds and deployments
will typically be necessary to satisfy approved requirements for an increment of capabil-
ity. The identification and development of technical solutions necessary for follow-on ca-
pability increments have some degree of concurrency, allowing subsequent increments to
be initiated and executed more rapidly.

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

2. This model will apply in cases where commercial off-the-shelf software, such as commer-
cial business systems with multiple modular capabilities, are acquired and adapted for
DoD applications. An important caution in using this model is that it can be structured so
that the program is overwhelmed with frequent milestone or fielding decision points and
associated approval reviews. To avoid this, multiple activities or build phases may be
approved at any given milestone or decision point, subject to adequate planning, well-
defined exit criteria, and demonstrated progress. An early decision to select the content
for each follow-on increment (2 through N) will permit initiation of activity associated
with those increments. Several increments will typically be necessary to achieve the re-
quired capability [DoD 2015, emphasis added].

Figure 5: Model 3: Incrementally Deployed Software Intensive Program [DoD 2015]

The 5000.02 also identifies Hybrid model programs A and B, designated respectively as hardware
dominant or software dominant, both indicating a reliance on incremental software builds.

4.3 Tailoring is Expected Behavior

The 5000.02 cautions that frequent fielding/deployment have potential to overwhelm programs by
creating additional milestones or fielding decisions. This is a common concern expressed by those
unfamiliar with Agile methods as well (we discuss whether or not Agile creates additional con-
tracting overhead in Section 5.4). However, the guidance also instructs programs that those in-
creases in overhead can be avoided.

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

As we emphasized above in Section 4.2, “multiple activities or build phases may be approved at
any given milestone or decision point, subject to adequate planning, well-defined exit criteria, and
demonstrated progress” [DoD 2015]. Later on, the 5000.02 provides this guidance: “Tailoring is
always appropriate when it will produce a more efficient and effective acquisition approach for
the specific product” [DoD 2015].

User needs and capabilities are not the same from program to program, so programs and the ac-
quisition strategy will not be the same. The models are an aid to the acquisition team, as they de-
fine the acquisition strategy and plans to obtain the best value for the user needs. The tailoring
guidance provides significant latitude to program managers and Milestone Decision Authorities
(MDAs) to find the best possible development solutions to meet mission needs.

We have learned from our extensive interviews over the last five years that DoD programs adopt-
ing Agile/iterative methods have reported great success with tailored incremental milestone re-
views that demonstrate progress with working, tested software. (Section 5.5 describes tailoring of
program milestones in more detail.)

The next section of this technical note addresses common areas of concern or misunderstanding
about Agile methods, real program examples that mitigated those concerns, and ways contracting
officers can help to minimize risk and maximize the probability of success when Agile methods
are employed.

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

5 Agile/DoD Contracting: Addressing Common Misconceptions

Now that we have provided a basic overall understanding of Agile and the latitude provided by
both the FAR and DoDI 5000.02 to support divergence from traditional waterfall-based ap-
proaches, we turn to addressing common concerns expressed about the use of Agile methods on
DoD programs.

Over the course of our multi-year research effort into Agile adoption within the DoD and through
our Agile Collaboration Group initiative, we have interviewed dozens of participants in varying
roles on programs acquiring software-intensive systems throughout the DoD and federal govern-
ment. This section describes common concerns or misconceptions about Agile methods that have
been reported to us by those practitioners and provides examples of solutions employed on suc-
cessful Agile programs in the past. We also address possible solutions to specific concerns that a
contracting officer may have regarding execution of and compliance monitoring under a contract
incorporating Agile software development. We also provide recommendations to the contracting
officer about what to look for when Agile approaches are applied by the program and the contrac-
tor.

5.1 “Agile Doesn’t Produce Any/Enough Documentation”

As previously discussed, Agile projects rely primarily on the delivery of working software to
demonstrate progress and try to limit documentation produced to that which directly adds value to
the development, sustainment, and operational use of the software. More traditional approaches
tend to rely on the production of deliverable documentation throughout the lifecycle. Waterfall-
style projects typically produce one large requirements document up front, and subsequently large
architecture and design documents, to be approved before the development of code begins. By
contrast, under Agile each iteration will feature a “definition of done” that describes the contents
of the iteration (often as simply as in a brief memorandum), and architecture and design docu-
ments will be updated during each iteration, evolving over the lifetime of the software project or
software portion of the project.

Thus, the proposed set of documentation deliverables under a contract incorporating Agile soft-
ware development may seem light. More conservative contracting officers who have not had
broad experience with Agile approaches may tend to be a bit nervous about this, interpreting the
decrease in documentation as a lack of evidence of progress, quality, or completion.

The emphasis Agile approaches place on automation can help to allay those concerns in practice:

Respondents who had the budget and resources to support automation (to the extent practi-
cal) of testing, integration, and other activities were able to take advantage of automation
tools to streamline the development of documentation deliverables required under contracts
or other agreements…. respondents who made extensive use of automation reported that
they were able to produce documentation from their Agile workflow that satisfied traceabil-
ity and other communication requirements, for both program offices and systems engineers.
Even if these documents go beyond the minimal required documentation favored under Agile
methods, automation supported generating them as much as possible from work-in-progress
artifacts in a manner that minimized the amount of additional work required to produce the

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

artifacts; in other words, the team was able to “maximize the amount of work not done” in
the production of additional documents [Agile Alliance 2001, Wrubel 2014].

If deliverable documentation looks thin or if a contracting officer is concerned that the deliverable
documentation proposed will not be sufficient to facilitate the development, sustainment, and op-
erations, the contracting officer should ask the program manager to demonstrate how the docu-
mentation relates to the objectives of program execution and documentation requirements. Docu-
mentation that does not derive naturally from the development and automation efforts will create
additional overhead; when determining if additional documentation deliverables are necessary,
question the value of the additional documentation being requested compared to the effort re-
quired to create it.

As DoDI 5000.02 indicates that tailoring is appropriate to achieve program objectives, ask pro-
gram managers to verify whether the documentation set proposed by the contractor is in compli-
ance with the information requirements of guiding policy, rather than traditional documentation
formats. Additional documentation requirements may be placed on contract to support specific
compliance requirements, such as in the case of certification and accreditation processes. Even in
these cases, it is possible that a contractor may propose an iterative approach to the development
of these documents. Where possible, accepting documentation products generated from automa-
tion tools, used by the software team, may be a more effective approach for the government than
requiring special customized documentation.

A Contracting Officer Should

 Question whether each document proposed is necessary for development, sustainment, or
support (eliminating unnecessary documentation to reduce unnecessary cost).

 Question whether the proposed set of documentation deliverables is sufficient for develop-
ment, sustainment, or support.

 Question whether any other specific compliance-related documentation (e.g., specific reports
required for Certification and Accreditation purposes) is needed to comply with specific regu-
latory or statutory needs. Recognize that these documents will likely incur additional cost,
and support their delivery in contractor-specified format whenever possible/feasible.

5.2 “Agile Methods Don’t Offer Enough Insight”

Opportunities for Insight

Many who don’t have experience with Agile are concerned about whether the government can
achieve the appropriate level of insight into the progress and quality of software development,
given that Agile assumes rather than starting from a fixed state, requirements evolve as under-
standing of the system evolves. This concern is magnified when Agile development schedules do
not align nicely with program milestone events like the Program Design Review (PDR) and the
Critical Design Review (CDR). Additionally, the development cadence on Agile software projects
generally does not fall into line with monthly reporting intervals, which can cause consternation.

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

In actuality, well-executed Agile projects can offer far greater opportunities for meaningful in-
sight into program progress than traditional waterfall-oriented projects. As one respondent indi-
cated, “You don’t deliver working code in three weeks without discipline.”18 Agile methods are
also highly collaborative by design, so a program office or empowered user representative should
be working shoulder-to-shoulder with the developer on a constant basis.

Agile software projects cannot succeed without consistent collaboration with an empowered end-
user representative, or a designated product owner. Just as the government utilizes Key Personnel
clauses for contractors as a means of risk mitigation, the government’s responsibility to provide
an empowered person operating in a product owner role is critical. The product owner is essential
to the ability for Agile software teams to build and deliver software that meets the needs of the
warfighter (represented by the product owner). An Agile software developer will insist on govern-
ment personnel participating in a product owner role, and the responsibilities and commitments of
this role should be included in the contract.

Figure 6 demonstrates many opportunities throughout the Agile development lifecycle that offer
the opportunity to collect data about the quality of software products. This graphic is not intended
to represent every activity in the development cycle. However, it makes clear that when the pro-
gram office is actively participating in Agile efforts, insight into development progress is nearly
constant.

Figure 6: Many Quality Touch Points in Agile Development [Hayes 2014]

One core element of Agile software development is to “instrument as much as possible”19

throughout the development process to support test, documentation, analytics, and situational
awareness. With the automated development and test environment instrumented appropriately,
Agile teams can offer the program office near-constant visibility into most elements of develop-
ment. As discussed in Hayes, a wide variety of metrics are used by the Agile team to monitor the
state of requirements and code [Hayes 2014]. Program offices and contractor/developer teams
may choose the level of granularity of this data that program office teams would like to see re-
ported on a regular basis.

Additionally, Agile teams generally perform a customer and/or user demonstration (sprint demo)
at the completion of each development iteration. These customer demonstrations review the “defi-
nition of done” agreed to at the start of the iteration, and demonstrate that all the items assigned to
the iteration have been completed. Thus, the program office or its representative (the product

18 Quote from respondent interview

19 Ibid.

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

owner) has the ability to observe the technical progress of the software on a regular, predictable
basis. It is generally not practical for an entire program office or large user group to participate in
the demonstration at the end of an iteration, but user/customer representation in the form of the
empowered product owner is a critical part of Agile processes.

Multiple interview respondents indicated that Agile software development teams on their pro-
grams provided online user accounts for the development team’s collaboration tools to program
office personnel. This enabled the program office team to monitor progress in near real time.

Measuring Progress and Quality

Metrics on software development progress and quality must of course also be captured in accord-
ance with both statutory and service-specific requirements. Table 3 demonstrates types of core
metrics required by both U.S. Air Force (USAF) and U.S. Army acquisition policy.20

Table 3: Sample Regulatory/Policy References [Hayes 2014]
USAF Software Core Metrics Army Regulation (AR) 70-1 Army Acquisition Policy

Software size

Software development effort

Software development schedule

Software defects

Software requirements definition and
stability

Software development staffing

Software progress (design, code and
testing)

Computer resource utilization

Section 7-13 Software Metrics: PMs will negotiate a set of software
metrics with the software developer to affect the necessary discipline in
the software development process and to assess the maturity of the
software product. At a minimum, the metrics should address

 schedule and progress regarding work completion

 growth and stability regarding delivery of the required capability

 funding and personnel resources regarding the work to be performed

 product quality regarding delivered products to meet the user’s need
without failure, as reflected in associated requirements documents

 software development performance regarding the capabilities to meet
documented program requirements

 technical adequacy regarding software reuse, programming
languages, and use of standard data elements

As Hayes wrote, “These requirements are written to allow flexibility in implementation—to fit the
scope and nature of the contract at hand” [Hayes 2014, emphasis added]. In other words, the
guidance requires that metrics be provided to characterize the progress of the program in a way
that makes sense—makes the metrics useful—given the environment of the program.

For example, different development organizations will offer up different representations of “soft-
ware size:” SLOC,21 ESLOC,22 and function points may all be familiar language to a contracting
officer. Estimated software size under a waterfall model will drive schedule and cost estimates,
and volume of code produced is used as an indicator of progress.

20 The GAO also discusses the expectation and method for use of Earned Value Management, in the context of

Agile software development programs [GAO 2012].

21 Source Lines of Code

22 Equivalent Source Lines of Code

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

In an Agile project, however, software sizing is not used as a basis for schedule and effort estima-
tion and is considerably less important as a measure of progress; the preference is to time-box it-
erations with a fixed schedule and cost, and use customer priority and relative effort sizing tech-
niques to maximize customer value delivered in each iteration [Anderson 2010, Hayes 2014].23
Different Agile teams will report on software size in different ways, depending on the complexity
of the project, their estimation techniques, and other preferences.

While it is beyond the scope of this technical note to delve deeply into the measurement of Agile
projects, it is important for a contracting officer to understand that thanks to an emphasis on auto-
mation and frequent delivery, Agile projects will have rich data available to provide insight into
both progress and quality of software. When working with a program office team to identify the
necessary metrics for required CDRLs,24 question what metrics are available via the contractor’s
existing systems and practices to characterize the software to satisfy the intent of service-specific
policy or regulation and to help the program manager monitor compliance with the contract terms.
As noted previously, cadence of software development may not marry up nicely to a monthly re-
porting window. Ensure that reporting timeframes (and associated lag, if any) and data access
methods are defined in the contract as agreed on by the program office and the contractor. If end-
of-sprint and end-of-release reporting conducted by the developer provide all the necessary data to
characterize the project, additional documentation may not be required.

A Contracting Officer Should

 Ensure that the program office’s commitment to providing representation and timely response
is reflected in the contract. This includes

 providing a representative (typically called a product owner) with authority to prioritize

among requirements consistent with the program vision

 participating in increment planning (establishing requirements for the increment)

 participating in sprint/iteration and release planning

 participating in end-of-increment demonstrations

 Ask the program office team to determine what manner of insight and oversight needs to be
reflected in the contract—does this include access to collaboration tools used by the develop-
ment team, copies of completion memos at the end of each iteration, burn down,25 or other
data?

 Ensure that access to automated collaboration tools and reporting/tracking environments, as
agreed to by program office and contractor, is reflected in the contract.

 Work with the program manager to ensure that appropriate metrics for the specific develop-
ment effort are included in a measurement plan in the CDRL list. Do metrics/data available
within the contractor’s automated tool suite, as part of the developer’s standard process, meet
the objectives for monitoring progress and quality?

23 Hayes provides more discussion on relative estimation [Hayes 2014].

24 Contract Data Requirements List

25 A graphical depiction of a team’s progress toward completing their workload, updated daily [Hayes 2014].

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

5.3 “Requirements Are Too Nebulous with Agile, and That’s too Risky”

Under Agile methods, we know that requirements are incrementally evolved and refined from a
high-level system vision as the system is developed and more is learned about the requirements. It
is understandable that this departure from the traditional approach (that of nailing down the re-
quirements to a great level of specificity up front) may at first lead a contracting officer to assume
that the lack of specificity introduces risk to into the development cycle. “Traditional acquisition
practice relies on certainty in requirements.… Uncertainty is unavoidable but seen as a weakness
to be eliminated” [Campbell 2010]. If we don’t specify exactly what we are buying, how will we
know when we get it?

We have already discussed that requirements can and do change frequently during the course of
system development. By expecting change within the scope of the system versus emphasizing
rigid up-front specification, DoD programs that use Agile can substantially reduce the overhead
associated with complex formal change control processes. These change control processes often
result in significant negotiation (which may be contentious) and can create delays in development.
The Agile approach of incrementally evolving and refining requirements prevents resource invest-
ment dedicated to “developing software for requirements that are not ultimately needed. It also
recognizes that money may be better spent for requirements that were not recognized at the begin-
ning.” In other words, “agile principles can protect a client from things they may not know” [Ar-
bogast 2012, emphasis added].

Steven Van Roekel, the U.S. chief information officer, announced in August 2014 the develop-
ment of the TechFAR Handbook, a publication designed to support federal IT acquisitions in lev-
eraging Agile methods while assuring compliance with the FAR.26 (The TechFAR is in publicly
released draft as of this writing, and subject to changes and enhancements.) While the TechFAR is
intended specifically to support IT acquisitions and the delivery of digital services, it clearly
demonstrates that articulating detailed software requirements on an incremental basis is not in-
consistent with acquisition regulation.

Figure 7 is from the TechFAR Handbook and demonstrates the approach of specifying a high-
level vision or roadmap before contract award, and evolving requirements over the course of the
development effort. These approaches are not exclusive to IT acquisitions, and can be leveraged
effectively in other software domains as well.

26 https://cio.gov/delivering-customer-focused-government-smarter/

https://cio.gov/delivering-customer-focused-government-smarter/

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 7: Requirements and Approach, Traditional Versus Agile Software Development [U.S. CIO
2014]

The FAR (Part 39.103), Modular Contracting, specifically indicates that modular contracting
techniques can be used to “reduce program risk and to incentivize contractor performance while
meeting the Government’s need for timely access to rapidly changing technology” when acquir-
ing IT systems [FAR 2015]. While Part 39 again specifically governs the acquisition of IT sys-
tems, the guidance for employing modular contracting techniques is very consistent with Agile
principles:

(b) When using modular contracting, an acquisition of a system of information technology may be
divided into several smaller acquisition increments that—

(1) Are easier to manage individually than would be possible in one comprehensive ac-
quisition;

(2) Address complex information technology objectives incrementally in order to en-
hance the likelihood of achieving workable systems or solutions for attainment of
those objectives;

(3) Provide for delivery, implementation, and testing of workable systems or solutions in
discrete increments, each of which comprises a system or solution that is not depend-
ent on any subsequent increment in order to perform its principal functions;

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

(4) Provide an opportunity for subsequent increments to take advantage of any evolution
in technology or needs that occur during implementation and use of the earlier incre-
ments; and

(5) Reduce risk of potential adverse consequences on the overall project by isolating and
avoiding custom-designed components of the system [FAR 2015].

 Note particularly the emphasis on the evolution of requirements as the system evolves.

A Contracting Officer Should

 Recognize that finely detailed advance requirements specifications are incongruous with Ag-
ile approaches. If a program team wishes to place a finely detailed requirement specification
on contract for an Agile project, engage in discussions about the appropriateness of the meth-
odology and its emphasis on requirements evolution. (Agile approaches are not appropriate
for all software projects—address this disconnect before developing the contract further.)

 Ensure that when a program pursues incremental delivery approaches, a clear high-level vi-
sion (e.g., a concept of operations, or CONOPS) is placed on contract—one that describes
Agile concepts and principles and desired outcomes but does not specifically mandate Agile.
(Remember, the program office cannot tell the vendor specifically how to execute the tech-
nical work.)

 Ensure that the government’s commitment to providing a user representative, empowered to
prioritize among system requirements within the scope of the product vision, is documented
in the contract. Agile projects cannot succeed without effective prioritization of requirements
on an ongoing basis.

5.4 “Frequent Iterations Create Significant Additional Contracting
Overhead”

The idea of issuing a new task order or statement of objectives/statement of work (SOO/SOW) for
software on a frequent basis (such as for every release, or for a specific timeframe) has led many
in the contracting community to object that Agile methods will result in significant overhead asso-
ciated with the higher number of task orders.27 However, consider how requirements and require-
ments change are addressed in waterfall development models:

In a waterfall-based approach on DoD programs (sometimes called “document-centric”):

assigned stakeholders create formal documents as the expression of “what to build” that
must be approved prior to use in further design and implementation

verification and validation of the requirements occurs as a (generally) complete set prior to
substantive design and implementation

changing the requirements, regardless of source, is a time-consuming and expensive process
designed to aggressively control change [Nidiffer 2014].

27 Interview respondents

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The TechFAR also addresses community concerns about administrative overhead on Agile pro-
jects: “While the process is highly interactive, the overall amount of work is not greater—just ap-
plied differently—to produce quicker results. As the Agile process matures, the amount of admin-
istration work should be less” [U.S. CIO 2014].

The key to minimizing unnecessary overhead is to establish a viable contract structure and gov-
ernance up front. A contracting officer can then work with a program manager to develop tem-
plates that bound the scope of a task order, while allowing the program office/contractor team
flexibility to operate within that scope. As new task orders are released, the templates can be used
to enforce the agreed-on boundaries (e.g., cost, schedule, number of iterations, high-level require-
ments).

One program contracting for software development under an existing multiple award contract
(MAC) indefinite delivery/indefinite quantity (IDIQ) vehicle reported that for ease of contracting
and reporting, the program team, software developer, and contracting officer developed a series of
templates based on relative sizing of work packages referred to as “epics.” This relative sizing is
often referred to as “T-shirt sizing;” the parties agreed to characteristics that defined an epic as
small, medium, or large. In development terms, that sizing referred to the number of story points
the development team had assigned to the elements of the epic. In contracting terms, the size of
the epic represented certain schedule and financial thresholds. When the program office and the
software developer prioritized an epic and agreed upon the relative sizing based on discussion of
the requirements to be met in the epic, then the contracting officer would issue a new task order
for that epic, using the template of the appropriate size. The up-front work that the parties put in
to developing the initial template gave the program office and the developer the flexibility to sys-
tematically prioritize software requirements and execute the work in small iterations. It also gave
the contracting officer predictability and the ability to make straightforward determinations of
compliance, even as the developer and the program office worked together to evolve the require-
ments. The template structure minimizes the overhead associated with the creation of multiple
task orders.

A different DoD program leverages a MAC IDIQ vehicle to contract for Agile software develop-
ment in a different way. This organization contracts on a time and materials (T&M) basis for
“software support of [System X].” (System X is a fielded system rather than a new start program.)
From a contracting perspective, there is no additional overhead created by the frequent software
iterations. The government does assume some risk associated with the delivery of the contractor’s
“best effort.” That risk is mitigated by a highly collaborative engagement model between the con-
tractor, the government program office, and the government “customers”—the commands that use
the system. In this case, the program office and the contractor collaborate extensively with the us-
ing commands and hold regular forums for the customers to identify and prioritize software re-
quirements. The prioritized requirements then form the product backlog for the system, and the
contractor works from the backlog to develop a product roadmap, identify target releases, and ul-
timately develop the sprint backlog that defines the requirements for each sprint. The intensive
collaboration is facilitated by a team charter for the government participants, describing the pro-
cess and the commitments required of all parties. In this case, a high level of trust (fostered by an
operating model that has continuously delivered high-quality software with transparency in the
development process) supports a reduction in administrative overhead. The program has operated
successfully under this model for several years.

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

A Contracting Officer Should

 Work with the program manager to identify opportunities to streamline future task or-
ders/awards by developing templates appropriate to the scope of the contract.

5.5 “Agile Development Projects Are Not Aligned with Required
Technical Reviews Under DoDI 5000.02, so They Can’t Be Done”

Technical reviews and evaluations are an important part of the DoD acquisition process. Agile
software is developed at a more rapid cadence than seen under traditional waterfall-based devel-
opment models, as we showed in Figure 1. However, as previously discussed, this means that in
Agile software development requirements, architecture, and design specifications are not devel-
oped sequentially and “baked” before code is written. Architecture, design, and test documenta-
tion are updated as the software is developed. This means that when contracting for Agile soft-
ware development, some flexibility is required for addressing technical reviews and evaluations in
an iterative or progressive manner. This typically means that an incremental, or iteration-based
technical review will occur on a regular cadence as part of the software development plan, and the
results may then be “rolled up” into a traditional PDR/CDR (or other technical review).

Unlike a traditional PDR, CDR, at these incremental reviews

All documentation will not appear at the same level of maturity:

 Some documentation will still be in draft condition (such as design documents for
the overall system that support requirements that have been allocated to some future
increment).

 Some documents will be partially completed (such as those supporting requirements
in upcoming increments that are dependent upon the implementation of earlier ca-
pabilities).

 Some will be fully complete (perhaps for requirements that are being implemented
in the current increment) [Lapham 2014].

As we discussed in Section 4, the 2015 DoDI 5000.02 guidance specifically allows for tailoring of
the acquisition process to achieve more efficient outcomes, which includes technical reviews. A
contracting officer should expect to see iterative or incremental technical reviews in the plan when
Agile methods are proposed, rather than a single PDR/CDR, etc. The contracting officer should
verify that the plan being placed on contract clearly illustrates the frequency and tailoring of tech-
nical reviews and describes the content of the iterative or incremental reviews, and how these
“roll up” into the overall system engineering review process, if applicable.

To illustrate what an iterative/incremental technical review process might look like in a plan, we
can use an example from a U.S. Marine Corps Agile pilot program. The program team reported
great success employing an iterative model for technical reviews, as illustrated in Figure 8.

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 8: Marine Corps (MC)-Agile Increment 128, 29

The figure demonstrates the overarching technical review process, and how incremental technical
reviews are incorporated into each iteration (or “sprint”). (The Marine Corps Agile pilot process is
described in great detail in Agile Software Teams: How They Engage with Systems Engineering
on DoD Acquisition Programs [Wrubel 2014].) In the case of this pilot project, the program
manager further documented the incremental reviews and mapped them to the corresponding “tra-
ditional” reviews for reference, as shown in Table 4.

Table 4: Agile Reviews and Traditional Reviews30
Technical Reviews in the Agile Process Traditional Analogous Systems Engineering Technical

Review

Initial Release Planning Review (IRPR)
 Focused on Initial Release and corresponding

sprints
Infrastructure Review (IR)
 Proposed Hardware Infrastructure
 Estimated Virtualized Resource Pool

Systems Requirements Review 2 (SRR2)

Systems Functional Review (SFR)

(Incremental PDRs will be conducted at the sprint levels)

Release Planning Reviews (RPR)
 Oversight will be delegated to the Agile Re-

view Board
 Focused on follow-on release and correspond-

ing sprints

Systems Functional Review (SFR)
 Subsequent release SFR

28 Graver, Carmen & Greeley, Les. United States Marine Corps Agile Pilot Program Lessons Learned (MC-Agile).

Briefing. February 2013. Unpublished.

29 Acronyms are expanded in Table 4.

30 Graver, Carmen & Greeley, Les. United States Marine Corps Agile Pilot Program Lessons Learned (MC-Agile).
Briefing. February 2013. Unpublished.

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Technical Reviews in the Agile Process Traditional Analogous Systems Engineering Technical
Review

Sprint Planning/Reviews31

Sprint Preliminary Design Review (S)PDR**

**Incrementally conducted with each sprint

Daily Build/Test/Integration

Sprint Demonstration Review***

*** Completed products are demonstrated to the
product owner

Critical Design Review (CDR)

N/A

Release Demonstration

Integration Readiness Review (IRR)

Test Readiness Review (TRR)

Sprint and Release Retrospectives
 Assessment opportunity to determine what

went well and what did not for sprint/releases

Continuous Process Improvement (CPI)

Systems Verification Review (SVR) Systems Verification Review (SVR)

Operational Test Readiness Review (OTRR) Operational Test Readiness Review (OTRR)

The incremental reviews are not large, multi-day meetings that many associate with typical PDR
and CDR activities on large programs. Rather, the reviews are short meetings that involve the key
stakeholders. Small increments are the focus, rather than the entire system, allowing participants
to focus carefully on the defined scope.

As the system evolves and more increments are completed, critical documentation is updated over
time: “Requirements and design allocated to future iterations should not be expected to be fully
matured during early iterations” [Lapham 2014]. Design and architecture documents, the Test and
Evaluation Master Plan (TEMP), System Engineering Management Plan (SEMP), etc., will all see
periodic updates as the requirements for each iteration are fixed, developed, and tested. Different
sections of the TEMP, for example, will be completed at the various reviews at various levels of
maturity, as different system requirements are realized. As stakeholders participate in technical
reviews, they will notice the evolution of the documentation as the software development pro-
gresses.

We have said that Agile provides opportunities to “fail fast” and address problem areas early and
within smaller boundaries than “big-bang” development. The implementation of incremental or
progressive reviews enables just that—any issues identified at the time of the review can be prior-
itized and addressed within upcoming iterations. Required technical reviews such as PDR and
CDR then present fewer surprises and challenges, as the stakeholders have been engaged in re-
viewing the incremental progress all along.

A Contracting Officer Should

 Verify that the contractor’s Software Development Plan (SDP) addresses incremental or pro-
gressive technical reviews, including how documentation is updated and how the incremen-
tal reviews support system engineering activities and program milestone reviews.

31 Sprint planning meetings occur at the beginning of the sprint for purposes of defining “what done means” for

that sprint. Sprint reviews occur at the end of the sprint to assess the progress against the agreed-on parame-
ters of the sprint: “Did it get done?”

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Ensure that reports or documentation called out in the SDP to support these reviews are ad-
dressed as CDRLs or documented within collaboration tools to which the program office has
access (as previously discussed).

 Ensure that the contract documents the expected participation of the government team in in-
cremental reviews and demonstrations.

The next section discusses using various contracting approaches to support the acquisition of soft-
ware developed using Agile methods.

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

6 Contracting Approaches

There is no universal “right way” to approach contracting for software developed under Agile
principles: each acquisition is unique. Time constraints, mission needs, and the size of the acquisi-
tion (in terms of budget) inform and constrain the types of contract vehicles appropriate for any
particular program. Additionally, policy about the contracting process itself, in addition to the
business/mission needs, may introduce additional constraints. Arbogast posits that there are three
“general areas of concern” for contracting professionals [Arbogast 2012]:

 risk and exposure (liability)

 flexibility to allow for change

 clarity regarding obligations, deliverables, and expectations

Ultimately, however, the contract needs to support the delivery of deployable software at defined
increments/intervals, rather than incentivizing “big-bang” efforts or the production of compliance
documents. Obviously, a program manager and contract officer have the most flexibility when
they work together to choose the type of contract vehicle to employ. Both perspectives need to be
addressed in the contract. The program manager wants deployable software and the contracting
officer wants that also, while protecting the government from “the ramifications of a breakdown
of trust and collaboration—and other problems—when framing the contract” [Arbogast 2012].
However, Agile software development can be successfully executed regardless of constraints on
contract type or contracting environment. The authors do not endeavor to guide the reader through
the rules governing the available contract types for any specific situation, but rather to demon-
strate that Agile principles can be supported and applied under any contract type, so long as the
contracting “business problem” is properly framed and addressed in the contract.

A new report, Innovative Contracting Case Studies, released in August 2014, is considered an “it-
erative, evolving document that describes a number of ways federal agencies are getting more in-
novation per taxpayer dollar—all under existing laws and regulations” [OSTP 2014]. This report
helps to provide insights and ideas that have been tried by different government organizations.
Companion reports include the U.S. Digital Services Playbook and The Tech FAR Handbook,

which provide more examples and ideas about flexibility in the Federal Acquisition Regulation
[U.S. CIO 2014]. The Office of Management and Budget in 2012 published guidance on contact-
ing for modular development [OMB 2012]. These various reports help to encourage government
organizations to take new approaches. Of utmost importance is that the contract provides incen-
tive for incremental delivery of working software.

6.1 Contract Types

The FAR, Part 16, defines two broad contract categories: fixed-price contracts (Subpart 16.2) and
cost-reimbursement contracts (Subpart 16.3). The contract type is selected and negotiated. In be-
tween the two end-point contract types are various approaches to incentive type contracts (Subpart
16.4). The Defense Acquisition University has created a Comparison of Major Contract Types,
which will help to quickly show the different major contract types. This summary contains other

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

helpful insights on contract category characteristics. We have reproduced these summary materi-
als in Appendix C as material to which the reader may refer when considering the use of Agile
software methods.

The fixed-price type contract is the U.S. government’s preferred approach, according to the litera-
ture and the interviews. It seems counterintuitive at first that the fixed-price contract type could be
greater risk for the government. One useful and informative work on contracting in the context of
using Agile software development approaches is Opelt’s Agile Contracts: Creating and Managing
Successful Projects with Scrum [Opelt 2013]. (While the book is written based on experience in
the European contracting environment, it provides highly relevant ideas and approaches that are
readily adaptable to contracting actions under the FAR.)

In Agile Contracts, Opelt developed a structure for thinking about contract types relative to the
variability of the work scope or the price of the work [Opelt 2013]. Figure 9 shows the grid and
contract type that is considered appropriate of the quadrant. The horizontal axis represents the
continuum of scope of project requirements from variable/flexible on the left, to a rigid, highly
fixed scope on the right. The vertical axis represents the price or budget requirement. The quad-
rants labeled I through IV represent different combinations of the price/budget and scope variabil-
ity. A contract to procure commercial hardware would fall into quadrant I. A contract that im-
posed a fixed budget and time box, while allowing for iterative requirements discovery (as in
Agile methods) would fall into quadrant II. (Quadrant III represents contracts such as those for
temporary consulting services. Quadrant IV is consistent with projects such as a known hardware
design, and variability or unknowns in the manufacturing process.)

Note that while time and material contract type is shown, any variation of cost-plus contract type
could be structured. The same range of variation goes for fixed price contract types. So the struc-
ture below (Figure 9) will work for the U.S. FAR and DFAR regulations.

Figure 9: Contract Type Applications

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

6.2 Cost-Reimbursement Approach for Agile Contracts

Many programs that use Agile software development approaches use cost-reimbursement cate-
gory type contracts. This category of contracts provides the most flexibility for variation in work
performed, within the bounds of the contract work scope, and associated legal limitations. For the
Agile software development work scope, remember the business goal is supporting the delivery of
deployable software that meets the business or operational needs.

Where practical, “Variations of time and materials (T&M) make for good agile-project pricing
models: simple, straightforward” [Arbogast 2012, p. 25]. The concerns related to T&M contracts

are ameliorated in an agile approach with a usable system each iteration – progress meas-
ure in terms of usable software features, high transparency, and termination that can occur
at the end of any iteration [Arbogast 2012, p 26].

Time and materials is just one type in this category of contract. FAR Subpart 16.301-1 describes
this:

Cost-reimbursement types of contracts provide for payment of allowable incurred costs, to
the extent prescribed in the contract. These contracts establish an estimate of total cost for
the purpose of obligating funds and establishing a ceiling that the contractor may not exceed
(except at its own risk) without the approval of the contracting officer.

The conditions for application of cost-reimbursement contracts is outlined in FAR Subpart
16.301-2:

(a) The contracting officer shall use cost-reimbursement contracts only when—

(1) Circumstances do not allow the agency to define its requirements sufficiently to al-
low for a fixed-price type contract (see 7.105); or

(2) Uncertainties involved in contract performance do not permit costs to be estimated
with sufficient accuracy to use any type of fixed-price contract.

Further, the use of a cost-reimbursement contract requires documented rationale and a “written
acquisition plan that is approved by at least one level above the contracting officer.”32 Other limi-
tations include the contractor’s account system and adequate government capability to manage the
cost-reimbursement contract.

Cost-reimbursement contracts potentially allow for refinement of the requirements based on the
evolution of the working system and the priority for functionality defined by the product owner.
To be effective, this type of contract requires adequate government capability to manage and
oversee the contracted work. Effective government capability and active interaction and collabo-
ration, focused on delivery of working software, increases the success of developing the right
working software. The flexibility to adjust to changing operational system needs is built into the
statement of work or objectives that accompanies the contractual funding constraint.

A number of the organizations that provided insight into their approach to contracting for working
software using Agile software development approaches used cost-reimbursable contracts. These

32 FAR 16.301-2 Application and FAR 16.301-3 Limitations.

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

contracts were driven more by the uncertainty of the requirements and the prioritizing of the re-
quirements based on changeable operational need. Some of these organizations established fixed
work cycles and software release cycles, with constraints on amount of work scheduled for the
fixed work cycles. These constraints helped the government to prioritize work. In at least one con-
tract situation, the government contracting officer had become “smart on Agile.”33 “In deciding
how to contract, there is no replacement for knowledge about HOW the work is to be done.”34

Some organizations we interviewed described that the cost-reimbursement type contracts allowed
faster delivery of working software. Instead of going through the separate phase of documenting
requirements for more fixed-price type contracts, the program office was able to work more col-
laboratively and have, in one case, “blended teams” of customers and Agile developers.

6.3 Firm-Fixed-Price Approach for Agile Contracts

Firm-fixed-price (FFP) contracting ideas are popular in acquisitions: provide a detailed specifica-
tion of the requirements, and then the winning contractor is obligated to meet the specified re-
quirement at an agreed-on price. In theory, most of the risk under this kind of arrangement is
shifted to the contractor: “This contract type places upon the contractor maximum risk and full re-
sponsibility for all costs and resulting profit or loss. It provides maximum incentive for the con-
tractor to control costs and perform effectively and imposes a minimum administrative burden
upon the contracting parties” [FAR 2015, 16.202-1]. Contracting officers do have leeway to in-
clude award-fee incentives based on factors “other than cost,” which include the achievement of
specific performance characteristics or schedule reductions, but the fixed-price is generally ap-
plied to a firm requirements specification set at the beginning of the program. Change manage-
ment processes are very rigorous and require contract modifications as previously noted.

With the changing nature of software requirements, a traditional FFP approach can quickly have
undesirable unintended outcomes—all changes to the requirements are subject to management
overhead of negotiating and securing the changes, and increased cost as they introduce deviations
from the original plan. Nailing down every element of schedule, scope, and cost up front creates
the opportunity for even minor perturbations in the requirements to ripple throughout the pro-
gram. In other words, implementing FFP vehicles with detailed software requirements specified
up-front can actually put the government at increased risk of cost and schedule overruns.

Fixed-cost approaches are not inherently incompatible with Agile, however.

33 Interview with government program office.

34 Ibid.

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 10: Value-Driven Projects [Opelt 2013]

A traditional waterfall approach nails down requirements and uses those to drive cost and sched-
ule estimates. In an Agile approach, cost and schedule are generally fixed parameters, and these
drive the scope of development within the construct of the product vision. The vision bounds the
requirements, and scope is determined by developing requirements as prioritized by the customer
within the available capacity of the development team. Under the traditional FFP model, once the
cost and schedule parameters are agreed to, all three dimensions of the triangle are fixed. Any re-
quirements change breaks the triangle. Opelt suggests an “Agile fixed-price” approach: “The
main characteristic of a shift to the agile paradigm is that the scope of an IT project is in contrast
to the classic waterfall model, no longer fixed in detail from the start” [Opelt 2013] (see Figure
10).

This Agile fixed-price contracting approach still expects a definition of scope, but the boundaries
are established as “values and vision for the project” [Opelt 2013]. A high-level product vision is
analogous to the preparation of a statement of objectives (SOO), as undertaken during perfor-
mance-based contracting in accordance with the FAR [U.S. CIO 2014]. The details of the contract
in the Agile fixed-price model come as a result of the interaction between the business/product
owner (needs) and development team(s). The contractual arrangement is used to define the appro-
priate interactions and approved approaches to tradeoff the business needs with the cost (budget)
constraints. Opelt focuses on collaborating to come to an understanding of the balance of the risk
between the contractor and the program office. (A true firm-fixed-price vehicle would leave the
contractor with the entire risk share.)

Some important definitions are helpful in understanding Opelt’s approach to arriving at Agile
fixed-price contracts:

• Indicative fixed-price range.35 Before the start of the checkpoint phase, a provisional
price is estimated, based on an unformulated rough scope of the subject matter (vision,
themes, and epics). This indicative fixed-price range is not yet contractually binding.

35 Analogous in DoD settings to Target Cost and Profit, Target Cost and Target Fee, Ceiling Price, Maximum Fee,

Minimum Fee. (See Appendix C.)

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

• Riskshare.36 The riskshare describes to what extent (percentage) the costs incurred by the
supplier will be charged to the customer on failure of the checkpoint phase or when the
maximum price range is exceeded. This percentage may, however, vary for the check-
point phase and the overall project.

• Checkpoint phase.37 A period of x sprints or a performance scope of y story points is
agreed upon as the test phase of cooperation. The final milestone is a checkpoint
whereby the customer and supplier can enter into implementation of the overall project
(or maybe not).

• Exit points.38 These are clearly defined points in time where the parties may terminate the
project in a controlled manner [Opelt 2013].

Opelt outlines six steps to collaboratively arrive at a contract structure for a fixed-price Agile ap-
proach:

1. Define the contract at the level of product or project vision, topics, and epics from the
perspective of the user (i.e., to a level at which the contract is complete but not yet de-
scribed in detail.)

2. Specify the details of an epic, down to the level of the user stories.

3. In a joint workshop, an overall estimate is made of the effort required starting from a set
of reference user stories from step 2, including the risks of implementation and business
value for these user stories.

4. Another step is the fixing of the riskshare exit points, and checkpoint phase (also with
riskshare for exactly this phase). Neither side is obliged to buy a pig in a poke.

5. Agree on the scope and expense management process and, of course, the governance of
the decision-making process.

6. Agree on a motivational model and a cooperative model, consider a bonus system [Opelt 2013].

The six steps are presented graphically in Opelt’s Figure 3.2, shown below in our Figure 11.

36 Analogous DoD contract types might include Cost-Sharing, Fixed-Price Incentive, Cost-Plus Incentive Fee.

(See Appendix C.)

37 Follow-on contracts based on performance experience: Typical DoD examples might include: Base Contract
with performance expectations and measures (Cost-Plus Incentive Fee). (See Appendix C.)

38 A typical example would be a Base Contract, with defined Option Periods. If option is not exercised, the contract
ends. (See Appendix C.)

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 11: Scoping and Process Definition for an Agile Fixed-Price Contract [Opelt 2013]

The approach of fixing costs and letting scope and schedule be variable is an established defense
acquisition approach known as “cost as an independent variable” (CAIV). This concept first ap-
peared in DoD Regulation 5000.2-R, Part 3, March 15, 1996. CAIV “is an inherent part of Agile,
which starts out with a high-level estimate that can be, and is, refined as the program progresses.
Agile allows the developers to provide an incremental total cost estimate at a detailed level as the
iterations are performed” [Lapham 2010]. Quadrant II in Figure 9 is consistent with this approach.

As discussed previously, the 2015 DoDI 5000.02 provides example program models to show that
variation in program implementation will occur, based on capability being developed and deliv-
ered. The Analysis of Alternatives (AoA) and the affordability analysis continue to expect that
cost (affordability)

constraints for procurement and sustainment will be derived early in program planning pro-
cesses. These constraints will be used to ensure capability requirements prioritization and
cost tradeoffs occur as early as possible and throughout the program’s life cycle [DoD
2015].

The concept of affordability continues to drive tradeoffs:

Early in a program, affordability goals are set to inform capability requirements and major
design tradeoffs needed to define the product being acquired. Once requirements and the
product definition are firm (prior to Milestone B), affordability caps are established to pro-
vide fixed cost requirements that are functionally equivalent to Key Performance Parameters
[DoD 2015].

One contracting officer who responded to our interview reported a discussion among team mem-
bers regarding FFP vehicles noted

The benefit is that Agile/Scrum prefers stable teams, which implies a stable burn rate, which
works well in FFP. However, the challenge is locking down very specific requirements and
priorities in advance that cause issues. The challenge is that executives and programs that
don’t understand what they are getting in FFP have a hard time justifying the contracts. The

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 43

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

solutions discussed include contracting for work units instead of defining requirements dur-
ing the project and creating shorter period contracts. The shorter period contracts mean less
risks and can allow the COs [contracting officers] comfort in trying Agile.39

The approach described by this respondent is consistent with applying CAIV principles to develop
the shorter period “work unit” contracts as contracting officers gained familiarity with Agile.

Support for incremental software development and delivery is contained in DoD Instruction
5000.02. Enclosure 3, Systems Engineering, contains section 11, Software:

A phased software development approach using testable software builds and/or fieldable
software increments enables the developers to deliver capability in a series of manageable,
intermediate products to gain user acceptance and feedback for the next build or increment,
and reduce the overall level of risk [DoD 2015].

Within the context of the Agile fixed-price contract book, the evolution of detailed understanding
is continually evolving to the point of delivered software. Figure 12 shows the increasing level of
detail that starts with a “vision” for the solution and continually unfolds to more detail, so that
software solution can be built, tested, and delivered.

Figure 12: Detailing the Vision [Opelt 2013]

6.4 GAO on Effective Practices for Agile Contracting

The GAO interviewed practitioners on federal Agile projects and identified 32 effective practices
in executing Agile projects [GAO 2012]. While the GAO’s entire list of practices holds great
merit, practices that warrant special note from contracting officers are

39 Interview respondent

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 44

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Identify measurable outcomes, not outputs, of what you want to achieve using Agile. An
example of this practice is creating a vision statement of project outcomes (such as a decrease
in processing time by a specific percent in a set time), rather than outputs (such as the amount
of code produced).

 Negotiate to adjust oversight requirements to a more Agile approach. This practice notes
that teams may be able to adjust oversight requirements by using frequent, tangible demon-
strations to gain the trust of reviewers and investors, potentially reducing the need for more
formal oversight documents.

 Make contracts flexible to accommodate your Agile approach. Contracts requiring water-
fall-based artifacts and milestone reviews may not support the frequent changes and product
demonstrations or iterations, and may inhibit adoption [GAO 2012].

6.5 Future Work Needed

Government contracting has been addressing the needs of the community through creative and
traditional approaches to contracting. Some of these contracting approaches have proven more ef-
fective at “deliver[ing] on a timely basis the best value product or service to the customer, while
maintaining the public’s trust and fulfilling public policy objectives” [FAR 2015, 1.102(a)].

Future work is needed to collect more examples and approaches for effective contracts. This in-
formation can help form a body of practice for government organizations to approach software
development work, using the Agile values and principles.

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

7 Summary

Federal and defense acquisition policy increasingly recognizes the promise that Agile or iterative
software development methods can bring to programs in terms of timely delivery, improved soft-
ware quality, and risk reduction. Contracting officers are encouraged by the FAR to support inno-
vative business practices within the bounds of statutory and local agency guidance, but career
field education for contracting officers has yet to catch up to provide guidance about effectively
adapting contracting to support these development approaches.

This technical note provides a foundation for contracting officers to “hit the ground running”
when they collaborate with programs seeking to employ or explore Agile methods. Contracting
professionals understandingly tend to adopt conservative approaches in protecting government in-
terests when developing new contracts. By providing a background on Agile and linking it to sup-
porting evidence in the FAR, the DoDI 5000.02, the TechFAR, and other guidance, we hope to
demystify Agile and demonstrate that it is in fact an accepted, legal, and encouraged approach to
software development. We have provided some guidance to help mitigate common misconcep-
tions about risk associated with Agile software development and provide some specific questions
and actions contracting officers can employ, while also emphasizing the support that program of-
fice subject matter experts must provide to a contracting officer in the development of an effective
contract. While a variety of factors (including program size, the competitive environment, the
type of system being acquired, and local agency restrictions) constrain the contracting approach,
programs can successfully contract for Agile software development under both fixed-price and
cost-reimbursable models.

The authors hope that contracting officers venturing into Agile software efforts will find this a
useful primer to enable them to proceed with confidence that typical structures and approaches
can be adapted and tailored to produce successful programmatic outcomes well within the bounds
of the legal, regulatory, and policy framework in which they operate.

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 46

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Appendix A: Interview Questions

The notes below served as a template for interviews conducted while researching this technical
note, tailored to the experience/background of each participant.

Demographic Data/Contracting Background

 Unique interview identifier (names not collected)

 Role

 Government agency or department

 Experience in Contracting

 number of years

 number of contracts

 types of contracts

 significance of software in the contracts

 size of contracts
 maximum dollar value
 length of contract

Data/Questions
 Knowledge or training related to Agile software development methods and concepts

 Experience with contracting for work that is expected to use more Agile software develop-
ment methods and approaches

 Experience with contracting officer representatives overseeing the performance on a contract
with agile approaches

 What agency procurement policy (if any) is in place that encourages more agile-oriented ap-
proaches in contracts?

 If policy is in place, are supporting tools/materials provided for the development of con-

tracts?

 Do you or your organization have criteria for selecting the type of contract (FFP,40 T&M,41
Award Fee, etc.) vehicle to put in place and what are they? Does the use of Agile influence
these criteria?

 If you make use of award/incentive fees on contracts involving Agile, can you provide

an example of your preferred formula/approach, or one that has been successful?

 What specific sections of the FAR have you used to support/justify the contracting approach
and the use of Agile?

40 Firm Fixed-Price

41 Time & Materials

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 47

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 How do you or your organization establish a measure of trust with the contractor and program
office performance to meet contract?

 A common concern we hear about contracting for Agile is that the requirements lack specific-
ity (by design).

 How do you ensure that scope of the contract is specific enough to be actionable, but not

overly restrictive?

 How do you use the contract to include the appropriate level of program office/user

feedback and collaboration, while avoiding constructive change?

 Progress and Quality

 Can you provide an example of how software performance/quality is monitored over the

course of the contract?

 Can you discuss how technical progress is monitored over the course of the contract?

 Can you discuss the technical/documentation deliverables required under Agile con-

tracts?

 Once the contract is awarded, what is your role and level of interaction with the program of-
fice?

 How do you evaluate the level and effectiveness of collaboration between the program

office and the contractor?

 How do you or your organization measure success in the contracting process and the final
contract? How does this adapt (if at all) when Agile is in play?

 Can you give us an example of the key identified risks on a project using Agile, and tell us
how the contract was designed to mitigate those risks?

 Do you envision the guidance in the interim DODI 5000.02 will increase/improve expecta-
tions regarding Agile software development?

 What is/are the greatest challenges you have encountered associated specifically with con-
tracting for Agile development?

 Have you had any negative experiences you can share regarding contracting for Agile soft-
ware development? (Discuss problems/causes, corrective action.)

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 48

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Appendix B: SEI Publications on Agile Software Development

Previous SEI reports on related Agile topics are available and include

Date SEI Publication Title

2010 Considerations for Using Agile in DoD Acquisition (CMU/SEI 2010-TN-002) [Lapham 2010]

2011 A Closer Look at 804: A Summary of Considerations for DoD Program Managers (CMU/SEI-2011-SR-
015) [Bellomo 2011]

2011 Agile Methods: Selected DoD Management and Acquisition Concerns (CMU/SEI-2011-TN-002) [Lapham
2011]

2014 Agile Methods and Request for Change (RFC): Observations from DoD Acquisition Programs (CMU/SEI-
2012-023) [Lapham 2014]

2012 DoD Information Assurance and Agile: Challenges and Recommendations Gathered Through Interviews
with Agile Program Managers and DoD Accreditation Reviewers (CMU/SEI 2012-TN-024) [Bellomo 2012]

2014 Parallel Worlds: Agile and Waterfall Differences and Similarities (CMU/SEI-2013-TN-021) [Palmquist
2014]

2014 Agile Software Teams: How They Engage with Systems Engineering on DoD Acquisition Programs
(CMU/SEI-2014-TN-013) [Wrubel 2014]

2014 Agile Metrics: Progress Monitoring of Agile Contractors (CMU/SEI-2013-TN-029) [Hayes 2014]

2014 Potential Use of Agile Methods in Selected DoD Acquisitions: Requirements Development and Manage-
ment (CMU/SEI-2013-TN-006) [Nidiffer 2014]

2014 Agile Methods in Air Force Sustainment: Status and Outlook (CMU/SEI-2014-TN-009) [Regan 2014]

In addition, blogs, podcasts, and webinars from the SEI have addressed additional topics related to
using Agile software development on acquisition programs. These materials can all be found on
the Acquisition Research page of the SEI website.42

SEI Blog Entries on Agile in the DoD
 Readiness and Fit Analysis (October 8, 2012)

http://blog.sei.cmu.edu/archives.cfm/author/suzanne-miller

 Agile Methods: Tools, Techniques, and Practices for the DoD Community (July 9, 2012)
http://blog.sei.cmu.edu/post.cfm/agile-methods-tools-techniques-and-practices-for-the-dod-
community

 Using Agile Effectively in DoD Environments (February 6, 2012)
http://blog.sei.cmu.edu/archives.cfm/author/mary-ann-lapham

Additional SEI blogs on Agile topics can be found at http://blog.sei.cmu.edu/archives.cfm/cate-
gory/agilec

Webinar

Agile Research Forum, “Agile Methods: Tools, Techniques, and Practices for the DoD Commu-
nity,” Mary Ann Lapham (August 2012)
http://www.sei.cmu.edu/go/agile-research-forum/

42 http://www.sei.cmu.edu/acquisition/research

http://blog.sei.cmu.edu/archives.cfm/author/suzanne-miller
http://blog.sei.cmu.edu/post.cfm/agile-methods-tools-techniques-and-practices-for-the-dod-community%EF%82%B7
http://blog.sei.cmu.edu/post.cfm/agile-methods-tools-techniques-and-practices-for-the-dod-community%EF%82%B7
http://blog.sei.cmu.edu/post.cfm/agile-methods-tools-techniques-and-practices-for-the-dod-community%EF%82%B7
http://blog.sei.cmu.edu/archives.cfm/author/mary-ann-lapham
http://blog.sei.cmu.edu/archives.cfm/cate-gory/agilec
http://blog.sei.cmu.edu/archives.cfm/cate-gory/agilec
http://blog.sei.cmu.edu/archives.cfm/cate-gory/agilec
http://www.sei.cmu.edu/go/agile-research-forum/
http://www.sei.cmu.edu/acquisition/research

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 49

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Podcasts
 SEI Agile in the DoD Podcast Series (ongoing series) http://www.sei.cmu.edu/podcasts/ag-

ile-in-the-dod/

 Agile Acquisition (September 4, 2012)
http://www.sei.cmu.edu/podcasts/index.cfm?getRecord=7D03CB1F-9D60-C314-
66526F8E8B2864B8&wtPodcast=AgileAcquisition

 Agile Software Teams: How the Engage with Systems Engineering on Department of Defense
Acquisition Programs (November 24, 2014)
http://blog.sei.cmu.edu/post.cfm/agile-software-teams-engage-systems-engineering-328

http://www.sei.cmu.edu/podcasts/ag-ile-in-the-dod/
http://www.sei.cmu.edu/podcasts/ag-ile-in-the-dod/
http://www.sei.cmu.edu/podcasts/ag-ile-in-the-dod/
http://www.sei.cmu.edu/podcasts/index.cfm?getRecord=7D03CB1F-9D60-C314-66526F8E8B2864B8&wtPodcast=AgileAcquisition
http://www.sei.cmu.edu/podcasts/index.cfm?getRecord=7D03CB1F-9D60-C314-66526F8E8B2864B8&wtPodcast=AgileAcquisition
http://blog.sei.cmu.edu/post.cfm/agile-software-teams-engage-systems-engineering-328

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 50

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Appendix C: DAU Guidance on Contract Type Selection

The following two pages are reproduced from the Defense Acquisition University’s presentation
on contract type selection, Comparison of Major Contract Types.

The presentation is available from the Acquisition Community Connection website
(https://acc.dau.mil/adl/en-US/214513/file/75692/Comparison%20of%20Major%20
Contract%20Types%20JANUARY%202014%20Final%20Version%20PRINT.ppt).

https://acc.dau.mil/adl/en-US/214513/file/75692/Comparison%20of%20Major%20Contract%20Types%20JANUARY%202014%20Final%20Version%20PRINT.ppt
https://acc.dau.mil/adl/en-US/214513/file/75692/Comparison%20of%20Major%20Contract%20Types%20JANUARY%202014%20Final%20Version%20PRINT.ppt

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 51

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 52

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 53

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The material in this appendix is reproduced from Agile Methods: Selected DoD Management and
Acquisition Concerns [Lapham 2011].

Appendix D: Agile Glossary

Backlog
An accumulation, especially of unfinished work or unfilled orders.1

Done
1. Having been carried out or accomplished; finished.2 Author’s note: In an Agile context, the

definition of done can include software, documentation, testing, and certification being com-
plete or any subset of this list being completed. The developer and product owner must agree
on what is included in “done.” With this in mind, another definition is

2. The useful definition of doneness stresses the goal of all Agile iterations: the product must re-
main shippable.

 All visible features work

 as advertised

 within the expected environment

 in any combination

 without degradation over time

 with graceful handling of errors

 Hide all broken or unfinished features

This definition of doneness emphasizes this result: we want a stable app at all times. When we
start the app, we know what is expected to work because we can see it and try it. We can prioritize
new features by seeing how they must be reconciled with already-visible features.3

Epic
A connected or bundled set of stories that result in a definable (in the case of software, desirable)
capability or outcome. An epic is a large user story. It is possible to break up an epic into several
user stories.4

1 http://www.thefreedictionary.com/backlog

2 http://www.thefreedictionary.com/done

3 http://billharlan.com/pub/papers/Agile_Essentials.html

4 http://www.targetprocess.com/LearnAgile/AgileGlossary/ThemeEpic.aspx

http://www.thefreedictionary.com/backlog
http://www.thefreedictionary.com/done
http://billharlan.com/pub/papers/Agile_Essentials.html
http://www.targetprocess.com/LearnAgile/AgileGlossary/ThemeEpic.aspx

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 54

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Iteration
In Agile software development,5 a single development cycle, usually measured as one or two
weeks. An iteration may also be defined as the elapsed time between iteration planning sessions.

Just Enough
Combining the two dictionary definitions of “just” and “enough” you get “exactly sufficient.”
Within the Agile community, this is an appropriate definition. Thus: just enough to be successful,
to get started, support the user story queue, accomplish our goal.

Pattern
1. A form of knowledge management. It is a literary form for documenting a common, successful

practice. It articulates a recurring problem, as well as the context of the problem and the condi-
tions that contribute to creating it. Likewise, the solution, the rationale for the solution, and
consequences of using it are given.

2. A way to capture expertise. Patterns document good ideas—strategies that have been shown to
work well for a variety of people in a variety of circumstances.6

Product Backlog
The master list of all functionality desired in the product.7

Release
The act or an instance of issuing something for publication, use, or distribution. Something thus
released: a new release of a software program.8

Sprint
A set period of time during which specific work must be completed and made ready for review.9
Often used as a synonym for iteration.

Story
In Agile software development, a story is a particular business need assigned to the software de-
velopment team. Stories must be broken down into small enough components that they may be
delivered in a single development iteration.10

5 http://searchsoftwarequality.techtarget.com/definition/iteration

6 Fearless Change, Patterns for Introducing New Ideas, Mary Lynn Mann, Linda Rising, Addison-Wesley, 2005,
Pearson Education Inc.

7 http://www.mountaingoatsoftware.com/scrum/product-backlog

8 http://www.thefreedictionary.com/release

9 http://searchsoftwarequality.techtarget.com/definition/Scrum-sprint

10 http://searchsoftwarequality.techtarget.com/definition/story

http://searchsoftwarequality.techtarget.com/definition/iteration
http://www.mountaingoatsoftware.com/scrum/product-backlog
http://www.thefreedictionary.com/release
http://searchsoftwarequality.techtarget.com/definition/Scrum-sprint
http://searchsoftwarequality.techtarget.com/definition/story

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 55

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Story Point
According to Cohn, “Story points are a unit of measure for expressing the overall size of a user
story, feature, or other piece of work …The number of story points associated with a story repre-
sents the overall size of the story. There is no set formula for defining the size of a story. Rather a
story-point estimate is an amalgamation of the amount of effort involved in developing the fea-
ture, the complexity of developing it, the risk inherent in it and so on.”11

Technical Debt
Technical debt and design debt are synonymous, neologistic metaphors referring to the eventual
consequences of slapdash software architecture and hasty software development. Code debt refers
to technical debt within a codebase.

Ward Cunningham first drew the comparison between technical complexity and debt in a 1992
experience report:

Shipping first time code is like going into debt. A little debt speeds development so long as it
is paid back promptly with a rewrite... The danger occurs when the debt is not repaid. Every
minute spent on not-quite-right code counts as interest on that debt. Entire engineering or-
ganizations can be brought to a stand-still under the debt load of an unconsolidated imple-
mentation, object-oriented or otherwise [Ozkaya 2011].

Time Box
A fixed amount of hours or days in which to accomplish something.12

Time Boxing
A planning technique common in planning projects (typically for software development), where
the schedule is divided into a number of separate time periods (time boxes, normally two- to six-
weeks long), with each part having its own deliverables, deadline, and budget.13

User Story
Descriptions of discrete functionality known to be needed by a particular user segment that is part
of the project’s audience, and other stories that address infrastructure and quality attributes that
are pervasive to the product (e.g., security or usability).

Velocity

Velocity is a measure of a team’s rate of progress. It is calculated by summing the number of
story points assigned to each user story that the team completed during the iteration. If the team
completes three stories each estimated at five story points, its velocity is 15. If the team completes
two five-point stories, its velocity is 10.14 Velocity, in the Agile community, refers to the amount

11 Cohn, M., Agile Estimating and Planning, p.36

12 http://www.agileadvice.com/archives/2006/02/timeboxing_a_cr.html

13 http://en.wikipedia.org/wiki/Timeboxing

14 Cohn, M. Agile Estimating and Planning, p. 38.

http://www.agileadvice.com/archives/2006/02/timeboxing_a_cr.html
http://en.wikipedia.org/wiki/Timeboxing

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 56

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

of capacity of a particular team to produce working software. It does not have a general analog in
traditional DoD projects.

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 57

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

References

URLs are valid as of the publication date of this document.

[AFEI 2012]
The Association for Enterprise Information. AFEI 2012 Agile in Defense Fall Workshop.
http://www.afei.org/Working-
Groups/ADAPT/Documents/Agile%20in%20Defense%20Fall%20Workshop%202012.pdf (2012)

[Agile Alliance 2001]
Agile Alliance. The Agile Manifesto. http://www.agilealliance.org/the-alliance/the-agile-Mani-
festo/ (2001)

[Agile Alliance 2001b]
Agile Alliance. The Twelve Principles of Agile Software. http://www.agilealliance.org/the-alli-
ance/the-agile-Manifesto/the-twelve-principles-of-agile-software/ (2001)

[Agile Alliance 2001c]
Agile Alliance. What is Agile Software Development? http://www.agilealliance.org/the-alli-
ance/what-is-agile/ (2001)

[Ambler 2004]
Ambler, Scott W. Disciplined Agile Software Development: Definition.
http://www.agilemodeling.com/essays/agileSoftwareDevelopment.htm (2004)

[Anderson 2010]
Anderson, David J. & Reinertsen, Donald G. Kanban: Successful Evolutionary Change for Your
Technology Business. Blue Hole Press, 2010.

[Arbogast 2012]
Arbogast, Tom, Larman, Craig, & Vodde, Bas. Agile Contracts Primer. (Derived from the book
Practices for Scaling Lean & Agile Development. Addison-Wesley. 2010)
http://www.agilecontracts.org (2012)

[Bellomo 2011]
Bellomo, Stephany. A Closer Look at 804: A Summary of Considerations for DoD Program Man-
agers. Software Engineering Institute, Carnegie Mellon University. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?assetid=9751 (2011)

[Bellomo 2012]
Bellomo, Stephany & Woody, Carol. DoD Information Assurance and Agile: Challenges and
Recommendations Gathered Through Interviews with Agile Program Managers and DoD Accred-
itation Reviewers (CMU/SEI-2012-TN-024). Software Engineering Institute, Carnegie Mellon
University. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=34083 (2012)

http://www.afei.org/Working-Groups/ADAPT/Documents/Agile%20in%20Defense%20Fall%20Workshop%202012.pdf
http://www.afei.org/Working-Groups/ADAPT/Documents/Agile%20in%20Defense%20Fall%20Workshop%202012.pdf
http://www.agilealliance.org/the-alliance/the-agile-Mani-festo/
http://www.agilealliance.org/the-alliance/the-agile-Mani-festo/
http://www.agilealliance.org/the-alliance/the-agile-Mani-festo/
http://www.agilealliance.org/the-alli-ance/the-agile-Manifesto/the-twelve-principles-of-agile-software/
http://www.agilealliance.org/the-alli-ance/the-agile-Manifesto/the-twelve-principles-of-agile-software/
http://www.agilealliance.org/the-alli-ance/the-agile-Manifesto/the-twelve-principles-of-agile-software/
http://www.agilealliance.org/the-alli-ance/what-is-agile/
http://www.agilealliance.org/the-alli-ance/what-is-agile/
http://www.agilealliance.org/the-alli-ance/what-is-agile/
http://www.agilemodeling.com/essays/agileSoftwareDevelopment.htm
http://www.agilecontracts.org
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetid=9751
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetid=9751
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetid=9751
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=34083

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 58

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[Campbell 2010]
Campbell, Grady. The Illusion of Certainty. Software Engineering Institute, Carnegie Mellon Uni-
versity. http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=20918 (2010)

[DAU 2014]
Defense Acquisition University. Comparison of Major Contract Types. https://acc.dau.mil/adl/en-
US/214513/file/75692/Comparison%20of%20Major%20 Con-
tract%20Types%20JANUARY%202014%20Final%20Version%20PRINT.ppt (2014)

[Defense Science Board 2009]
Defense Science Board. Report of the Defense Science Board Task Force on Department of De-
fense Policies and Procedures for the Acquisition of Information Technology. Office of the Under
Secretary of Defense for Acquisition, Technology, and Logistics. http://www.acq.osd.mil/dsb/re-
ports/ADA498375.pdf (2009)

[DoD 2015]
Department of Defense. Department of Defense Instruction 5000.02. http://www.dtic.mil/whs/di-
rectives/corres/pdf/500002p.pdf (2015)

[FAR 2015]
U.S. General Services Administration. Federal Acquisition Regulation. https://acquisi-
tion.gov/far/index.html (2015)

[GAO 2012]
U.S. Government Accountability Office. Effective Practices and Federal Challenges in Applying
Agile Methods. GAO-12-681. http://www.gao.gov/products/gao-12-681 (July 2012)

[Hayes 2014]
Hayes, Will, Miller, Suzanne, Lapham, Mary Ann, Wrubel, Eileen, & Chick, Timothy A. Agile
Metrics: Progress Monitoring of Agile Contractors (CMU/SEI-2013-TN-029). Software Engi-
neering Institute, Carnegie Mellon University, 2014. http://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=77747

[Highsmith 2000]
Highsmith, J. Agile Project Management: Creating Innovative Products, 2nd ed. Addison-
Wesley, 2009.

[Kennedy 2011]
Kennedy, Matthew. “An Agile Systems Engineering Process: The Missing Link?” CrossTalk
(May-June 2011): 16-20. http://www.crosstalkonline.org/storage/issue-ar-
chives/2011/201105/201105-Kennedy.pdf

[Lapham 2010]
Lapham, M.A., Williams, R., Hammons, C., Burton, D., & Schenker, A. Considerations for
Using Agile in DoD Acquisition (CMU/SEI-2010-TN-002). Software Engineering Institute,
Carnegie Mellon University, 2010. http://www.sei.cmu.edu/library/abstracts/reports/10tn002.cfm

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=20918
https://acc.dau.mil/adl/en-US/214513/file/75692/Comparison%20of%20Major%20
https://acc.dau.mil/adl/en-US/214513/file/75692/Comparison%20of%20Major%20
http://www.acq.osd.mil/dsb/re-ports/ADA498375.pdf
http://www.acq.osd.mil/dsb/re-ports/ADA498375.pdf
http://www.acq.osd.mil/dsb/re-ports/ADA498375.pdf
http://www.dtic.mil/whs/di-rectives/corres/pdf/500002p.pdf
http://www.dtic.mil/whs/di-rectives/corres/pdf/500002p.pdf
http://www.dtic.mil/whs/di-rectives/corres/pdf/500002p.pdf
https://acquisi-tion.gov/far/index.html
https://acquisi-tion.gov/far/index.html
https://acquisi-tion.gov/far/index.html
http://www.gao.gov/products/gao-12-681
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=77747
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=77747
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=77747
http://www.crosstalkonline.org/storage/issue-ar-chives/2011/201105/201105-Kennedy.pdf
http://www.crosstalkonline.org/storage/issue-ar-chives/2011/201105/201105-Kennedy.pdf
http://www.crosstalkonline.org/storage/issue-ar-chives/2011/201105/201105-Kennedy.pdf
http://www.sei.cmu.edu/library/abstracts/reports/10tn002.cfm

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 59

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[Lapham 2011]
Lapham, Mary Ann, Garcia-Miller, Suzanne, Adams, Lorraine, Brown, Nanette, Hackemack,
Bart, Hammons, Charles (Bud), Levine, Linda, & Schenker, Alfred. Agile Methods: Selected DoD
Management and Acquisition Concerns (CMU/SEI-2011-TN-002). Software Engineering Insti-
tute, Carnegie Mellon University, 2011. http://resources.sei.cmu.edu/library/asset-view.cfm?As-
setID=9769

[Lapham 2014]
Lapham, Mary Ann, Bandor, Michael, & Wrubel, Eileen. Agile Methods and Request for Change
(RFC): Observations from DoD Acquisition Programs (CMU/SEI-2013-TN-031). Software Engi-
neering Institute, Carnegie Mellon University, 2014. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=77732

[Nidiffer 2014]
Nidiffer, Kenneth, Miller, Suzanne, & Carney, David. Potential Use of Agile Methods in Selected
DoD Acquisitions: Requirements Development and Management (CMU/SEI-2013-TN-006). Soft-
ware Engineering Institute, Carnegie Mellon University, 2014. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?AssetID=89158

[OMB 2012]
Office of Management and Budget. Contracting Guidance to Support Modular Development.
http://www.whitehouse.gov/sites/default/files/omb/procurement/memo/contracting-guidance-to-
support-modular-development.pdf (2012)

[Opelt 2013]
Opelt, Andreas, Gloger, Boris, Pfarl, Wolfgang, & Mittermayr, Ralf. Agile Contracts: Creating
and Managing Successful Projects with Scrum. John Wiley & Sons, Inc., 2013.
http://onlinelibrary.wiley.com/book/10.1002/9781118640067

[OSD 2010]
Office of the Secretary of Defense. A New Approach for Delivering Information Technology
Capabilities in the Department of Defense, Report to Congress, November 2010, Pursuant to
Section 804 of the National Defense Authorization Act for Fiscal Year 2010. United States
Department of Defense, 2010. http://dcmo.defense.gov/documents/OSD%2013744-10%20-
%20804%20Report%20to%20Congress%20.pdf

[OSTP 2014]
White House Office of Science and Technology Policy (OSTP). Innovative Contracting Case
Studies. http://www.whitehouse.gov/sites/default/files/microsites/ostp/innovative_contract-
ing_case_studies_2014_-_august.pdf (2014)

[Ozkaya 2011]
Ozkaya, I., Brown, N., & Nord, R. Ch. 3, “Communicating the Value of Architecting within Agile
Development,” 11-22. Results of SEI Independent Research and Development Projects (FY 2010)
(CMU/SEI-2011-TR-002). Software Engineering Institute, Carnegie Mellon University, 2011.
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=9895

http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=9769
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=9769
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=9769
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=77732
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=77732
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=77732
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=89158
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=89158
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=89158
http://www.whitehouse.gov/sites/default/files/omb/procurement/memo/contracting-guidance-to-support-modular-development.pdf
http://www.whitehouse.gov/sites/default/files/omb/procurement/memo/contracting-guidance-to-support-modular-development.pdf
http://www.whitehouse.gov/sites/default/files/omb/procurement/memo/contracting-guidance-to-support-modular-development.pdf
http://onlinelibrary.wiley.com/book/10.1002/9781118640067
http://dcmo.defense.gov/documents/OSD%2013744-10%20-%20804%20Report%20to%20Congress%20.pdf
http://dcmo.defense.gov/documents/OSD%2013744-10%20-%20804%20Report%20to%20Congress%20.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/innovative_contract-ing_case_studies_2014_-_august.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/innovative_contract-ing_case_studies_2014_-_august.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/innovative_contract-ing_case_studies_2014_-_august.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=9895

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 60

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[Palmquist 2014]
Palmquist, Steven, Lapham, Mary Ann, Garcia-Miller, Suzanne, Chick, Timothy, & Ozkaya,
Ipek. Parallel Worlds: Agile and Waterfall Differences and Similarities (CMU/SEI-2013-TN-
021). Software Engineering Institute, Carnegie Mellon University, 2013. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?AssetID=62901

[Regan 2014]
Regan, Colleen, Lapham, Mary Ann, Wrubel, Eileen, Beck, Stephen, & Bandor, Michael. Agile
Methods in Air Force Sustainment: Status and Outlook (CMU/SEI-2014-TN-009). Software Engi-
neering Institute, Carnegie Mellon University. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=312754 (2014)

[Sliger 2008]
Sliger, Michele & Broderick, Stacia. The Software Project Manager's Bridge to Agility.
Pearson Education, 2008.

[U.S. CIO 2014]
United States Chief Information Officer. TechFAR Handbook for Procuring Digital Services Us-
ing Agile Processes. https://playbook.cio.gov/techfar/ (2014)

[Wrubel 2014]
Wrubel, Eileen, Miller, Suzanne, Lapham, Mary Ann, & Chick, Timothy. Agile Software Teams:
How They Engage with Systems Engineering on DoD Acquisition Programs (CMU/SEI-2014-
TN-013). Software Engineering Institute, Carnegie Mellon University, 2014. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?AssetID=295943

http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=62901
http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=62901
http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=62901
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=312754
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=312754
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=312754
https://playbook.cio.gov/techfar/
http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=295943
http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=295943
http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=295943

CMU/SEI-2015-TN-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 61

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

August 2015

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Contracting for Agile Software Development in the Department of Defense: An Introduction

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Eileen Wrubel, John Gross

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2015-TN-006

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFLCMC/PZE/Hanscom

Enterprise Acquisition Division

20 Schilling Circle

Building 1305

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

n/a

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This technical note (TN), part of an ongoing Software Engineering Institute (SEI) series on Agile in the Department of Defense (DoD),
addresses effective contracting for Agile software development. Contracting officers do not receive career field education targeted at
achieving successful outcomes with Agile software development methods. For the purposes of this TN, the SEI gathered data from pro-
gram office team members, contractors, and contracting officers about the state of contracting activities involving Agile development.
The authors conducted a series of interviews and mined past interviews and survey data on Agile software development to understand
common questions and concerns and provide some real-world examples to address them. This TN offers a primer on Agile based on a
contracting officer’s goals, describes how program office teams need to support contracting efforts, and addresses common concerns
about Agile and how those concerns can be mitigated in the contracting process.

14. SUBJECT TERMS

Agile, contracting, FAR

15. NUMBER OF PAGES

75

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Acknowledgments
	Executive Summary
	Abstract
	1 Introduction
	2 What is Agile?
	3 The Contracting Officer, the FAR, and Agile
	4 Incremental Development in the DoDI 5000.02
	5 Agile/DoD Contracting: Addressing Common Misconceptions
	6 Contracting Approaches
	7 Summary
	Appendix A: Interview Questions
	Appendix B: SEI Publications on Agile Software Development
	Appendix C: DAU Guidance on Contract Type Selection
	Appendix D: Agile Glossary
	References

