

Agile Metrics:
Progress Monitoring of Agile Contractors

Will Hayes
Suzanne Miller
Mary Ann Lapham
Eileen Wrubel
Timothy Chick

January 2014

TECHNICAL NOTE
CMU/SEI-2013-TN-029

Software Solutions Division

http://www.sei.cmu.edu

http://www.sei.cmu.edu

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract

No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineer-

ing Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the United States Department of Defense.

This report was prepared for the

SEI Administrative Agent

AFLCMC/PZM

20 Schilling Circle, Bldg 1305, 3rd floor

Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING

INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON

UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR

PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE

OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,

OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted be-

low.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material

for internal use is granted, provided the copyright and “No Warranty” statements are included with all

reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely dis-

tributed in written or electronic form without requesting formal permission. Permission is required for

any other external and/or commercial use. Requests for permission should be directed to the Software

Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon Universi-

ty.

DM-0000811

mailto:permission@sei.cmu.edu

CMU/SEI-2013-TN-029 | i

Table of Contents

Acknowledgments vii

Executive Summary ix

Abstract xiv

1 How to Use this Technical Note 1
1.1 Scope 1
1.2 Intended Audience 1
1.3 Key Contents 2

2 Foundations for Agile Metrics 4
2.1 What Makes Agile Different 4

2.1.1 Agile Manifesto 4
2.1.2 Comparison to Traditional Approaches 5

3 Selected Measurement Considerations in DoD Acquisition 6
3.1 Specific Governance Requirements 8

3.1.1 Earned Value Management; Cost and Schedule Monitoring 9
3.1.2 Delivery and Quality Monitoring 9

3.2 Tools and Automation in Wide Usage 10

4 Agile Metrics 11
4.1 Basic Agile Metrics 12

4.1.1 Velocity 12
4.1.2 Sprint Burn-Down Chart 13
4.1.3 Release Burn-Up Chart 14

4.2 Advanced Agile Metrics 15
4.2.1 Velocity Metrics 15
4.2.2 Flow Analysis 20

5 Progress Monitoring in Acquisitions Using Agile Methods 25
5.1 Software Size 25
5.2 Effort and Staffing 27
5.3 Schedule 28
5.4 Quality and Customer Satisfaction 29
5.5 Cost and Funding 30
5.6 Requirements 31
5.7 Delivery and Progress 32
5.8 Agile Earned Value Management System 32

6 Conclusion 35

Appendix A Past Publications in the SEI Agile Series 37

References/Bibliography 39

CMU/SEI-2013-TN-029 | ii

CMU/SEI-2013-TN-029 | iii

List of Figures

Figure 1: Audience 2

Figure 2: Agile Manifesto 4

Figure 3: The Defense Acquisition Management System [DoD 2007] 6

Figure 4: Sample Velocity Column Chart 12

Figure 5: Sample Sprint Burn-Down Chart 13

Figure 6: Sample Release Burn-Up Chart 14

Figure 7: Sample Defect Burn-Up Chart 17

Figure 8: Coefficient of Variation Example 20

Figure 9: Sample Stacked Column Chart 21

Figure 10: Sample Cumulative Flow Diagram 22

Figure 11: Sample Cumulative Flow Diagram – Fixed Pace of Work 23

Figure 12: Sample Cumulative Flow Diagram – Illustration of Workflow Issues 24

Figure 13: Estimating Workload for a Single Sprint 26

Figure 14: Notional Illustration of Agile Versus Waterfall Integration/Test Efforts 28

Figure 15: Many Quality Touch-Points in Agile Development 29

Figure 16: Defect Analysis Using a Cumulative Flow Diagram 30

Figure 17: Accumulation of Earned Business Value [Rawsthorne 2012] 34

CMU/SEI-2013-TN-029 | iv

CMU/SEI-2013-TN-029 | v

List of Tables

Table 1: Sample Regulatory References 8

CMU/SEI-2013-TN-029 | vi

CMU/SEI-2013-TN-029 | vii

Acknowledgments

The authors wish to thank the many members of the Agile Collaboration Group who continue to
offer their experiences, insights, and advocacy to the task of advancing the implementation of
cost-effective methods for development and sustainment of software-reliant systems within the
Department of Defense. Several of this group generously gave their time to participate in inter-
views about their experiences. Their insights and anecdotes added greatly to our understanding.

We wish to specifically acknowledge the contributions of:

Mr. John C. Cargill, MA, MBA, MS
Air Force Cost Analysis Agency

Mr. Russell G. Fletcher
Vice President, Federal Agile Practice Manager
Davisbase Consulting Inc.

Ms. Carmen S. Graver
USMC

Mr. Dan Ingold
University of Southern California
Center for Systems and Software Engineering

Larry Maccherone
Director of Analytics – Rally Software

Carol Woody
Technical Manager, Cyber Security Engineering
Software Engineering Institute
Carnegie Mellon University

CMU/SEI-2013-TN-029 | viii

CMU/SEI-2013-TN-029 | ix

Executive Summary

Agile methods are seen by some as an effective means to shorten delivery cycles and manage
costs for the development and maintenance of major software-reliant systems in the Department
of Defense. If these benefits are to be realized, the personnel who oversee major acquisitions must
be conversant in the metrics used to monitor these programs. This technical note offers a refer-
ence for those working to oversee software development on the acquisition of major systems from
developers using Agile methods. While the primary focus of the technical note involves acquisi-
tion of software-reliant systems in a highly regulated environment, such as the U.S. Department of
Defense (DoD), the information and advice offered can be readily applied to other settings where
a development organization that employs Agile methods is being monitored.

The reader is reminded of key characteristics of Agile methods that differentiate them from the
so-called traditional approaches. Previous technical notes in this series1 provide a broad discus-
sion of these topics [Lapham 2010, Lapham 2011]. In this technical note, we focus specifically on
important considerations for the definition and use of metrics. Important differentiators that affect
metrics include the following:

 There is a reliance on a “time-box approach” in place of the traditional phase-gate approach
to managing progress. This means that the development organization is working to maximize
valuable work performed within strictly defined time boundaries. The schedule remains fixed,
and the work to be performed is the variable. This is in contrast to many traditional approach-
es where the period of performance may be subject to negotiation, while attempting to fix the
scope of the work product(s) to be delivered. Also, the customer (or customer representative)
is involved in frequent evaluations of deliveries – rather than successive intermediate work
products that lead up to a single delivery of the software.

 The staff utilization approach favors a more uniform loading across the life of a program—
rather than an approach that involves “ramping up” and “ramping down” staffing for various
specialized job categories. This means that establishing the needed staffing profile is a high
priority from the start, and deferred decisions are potentially more costly. This also means
that once a well-functioning development team is established, the pace at which it performs
can be sustained over a longer period of time. Combined with a de-emphasis on phase-gate-
management, this also means that greater continuity can be achieved. That is, there are fewer
“handoffs” among specialized staff, where information may be lost or delays may be intro-
duced as intermediate work products change hands.

 A focus on delivering usable software replaces the scheduled delivery of interim work prod-
ucts and the ceremonies that typically focus on milestones. This means that the customer (or
customer representative) should expect to see working product, frequently. The planned inter-
actions and demonstrations permit a disciplined process for changing the requirements and
shaping the final form of the delivered product. Acceptance testing happens iteratively, rather
than at the end.

1 A complete listing of these publications is found in Appendix A

CMU/SEI-2013-TN-029 | x

With such fundamental differences in the underlying operating model, there is great potential for
miscommunication between an Agile development organization and the traditional acquisition
organization. The experience of seasoned managers and many of the “rules of thumb” developed
through hard experience may not apply with Agile methods. Metrics that help diagnose progress
and status differ from established and familiar ways of working.

Acknowledging the regulatory and legal requirements that must be satisfied, we offer insights
from professionals in the field who have successfully worked with Agile suppliers in DoD acqui-
sitions. Strategies are summarized that fulfill the expectations of senior leadership in the acquisi-
tion process, with new approaches driven by this different philosophy of development. The reader
is provided with examples of new metrics that meet the existing reporting requirements.

The hallmarks of measurement in Agile development include:

 Velocity: a measure of how much working software is delivered in each sprint (the time-
boxed period of work)

 Sprint Burn-Down: a graphical depiction of the development team’s progress in completing
their workload (shown day-by-day, for each sprint as it happens)

 Release Burn-Up: a graphical depiction of the accumulation of finished work (shown sprint-
by-sprint)

Most of the measurement techniques employed in Agile development can be readily traced back
to these three central tools. We offer specific advice for interpreting and using these tools, as well
as elaborations we have seen and been told of by people who use them.

One of the most promising tools for metrics emerging from Agile development is the Cumulative
Flow Diagram. This depiction of data shows layers of work over time, and the progression of
work items across developmental states/phases in a powerful way. Once you learn to read these
charts with the four-page introduction we offer at the end of Section 4, many intuitively logical
uses should become apparent.

Based on our interviews with professionals managing Agile contracts, we see successful ways to
monitor progress that account for the regulatory requirements governing contracts in the Depart-
ment of Defense. The list below addresses ingredients for success:

 Software Size is typically represented in story points when Agile methods are used. This ap-
proach is supported by the decomposition of functionality from a user’s perspective—into us-
er stories. Tracing these user stories to system capabilities and functions, a hierarchy within
the work can be meaningfully communicated and progress monitoring based on delivered
functionality will focus on utility and function—rather than proxies like lines of code or func-
tion points.

 Effort and Staffing must be tracked because they tend to be the primary cost drivers in
knowledge-intensive work. Use of Agile methods will not change this fundamental fact, nor
will it be necessary to make major changes to the mechanisms used to monitor progress. What
does change, however, is the expected pattern of staff utilization. With the steady cadence of
an integrated development team, the ebb and flow of labor in specialized staff categories is
less prevalent when using Agile methods. In general, Agile teams are expected to have the

CMU/SEI-2013-TN-029 | xi

full complement of needed skills within the development team—though some specialized
skills may be included as part time members on the team. Rules of thumb applied in monitor-
ing this element of performance on a contract will need to be revised. The expectation of a
slow ramp-up in staffing during the early phases of a development effort may be problematic,
and plans for declining use of development staff during the last half of the program (when
testing activities traditionally take over) will need to be recalibrated. Organizations may es-
tablish test teams to perform system testing or regression testing outside the context of the
development team. We are planning for a focused paper on testing in the context of Agile de-
velopment where this topic will be covered more fully—targeting FY14 as of this writing.

 Schedule is traditionally viewed as a consequence of the pace of work performed. In Agile
development, the intent is to fix this variable, and work to maximize performance of the de-
velopment team within well-defined time boxes. This places important requirements on
stakeholders who must communicate the requirements and participate in prioritization of the
work to be performed.

 Quality and Customer Satisfaction is an area where Agile methods provide greater oppor-
tunity for insight than traditional development approaches tend to allow. The focus on fre-
quent delivery of working software engages the customer in looking at the product itself, ra-
ther than the intermediate work products like requirements specifications and design
documents. A strong focus on verification criteria (frequently called “definition of done”)
sharpens the understanding of needed functionality, and attributes of the product that are im-
portant to the customer.

 Cost and Funding structures can be tailored to leverage the iterative nature of Agile meth-
ods. Using optional contract funding lines or indefinite delivery indefinite quantity (IDIQ)
contract structures can add flexibility in planning and managing the work of the development
organization. A more detailed discussion of the considerations for contracting structures to
handle this is the subject of an upcoming paper in the SEI series.

 Requirements are often expressed very differently in the context of Agile development—in
contrast to traditional large-scale waterfall development approaches. A detailed and complete
requirements specification document (as defined in DoD parlance) is not typically viewed as
a prerequisite to the start of development activities when Agile methods are employed. How-
ever, the flexibility to clarify, elaborate and re-prioritize requirements, represented as user
stories, may prove advantageous for many large programs. The cost of changing requirements
is often seen in ripple effects across the series of intermediate work products that must be
maintained in traditional approaches. The fast-paced incremental approach that typifies Agile
development can help reduce the level of rework.

 Delivery and Progress monitoring is the area where perhaps the greatest difference is seen in
Agile development, compared to traditional approaches. The frequent delivery of working
(potentially shippable) software products renders a more direct view of progress than is typi-
cally apparent through examination of intermediate work products. Demonstrations of system
capabilities allow early opportunities to refine the final product, and to assure that the devel-
opment team is moving toward the desired technical performance—not just to ask whether
they will complete on schedule and within budget.

CMU/SEI-2013-TN-029 | xii

Detailed discussions with graphical illustrations and examples provided in this technical note will
lead you through lessons being learned by Agile implementers. New ways of demonstrating pro-
gress and diagnosing performance are offered, with a narrative driven by actual experience. Many
of the explanations contain direct quotes from our interviews of practitioners who oversee, coach,
or manage Agile development teams and contracts. Their field experience adds much depth to the
information available from articles, books, and formal training available in the market.

CMU/SEI-2013-TN-029 | xiii

CMU/SEI-2013-TN-029 | xiv

Abstract

This technical note is one in a series of publications from the Software Engineering Institute in-
tended to aid United States Department of Defense acquisition professionals in the use of Agile
software development methods. As the prevalence of suppliers using Agile methods grows, these
professionals supporting the acquisition and maintenance of software-reliant systems are witness-
ing large portions of the industry moving away from so-called “traditional waterfall” life cycle
processes. The existing infrastructure supporting the work of acquisition professionals has been
shaped by the experience of the industry—which up until recently has tended to follow a waterfall
process. The industry is finding that the methods geared toward legacy life cycle processes need
to be realigned with new ways of doing business. This technical note aids acquisition profession-
als who are affected by that realignment.

CMU/SEI-2013-TN-029 | xv

CMU/SEI-2013-TN-029 | 1

1 How to Use this Technical Note

This technical note is one in a series of publications from the Software Engineering Institute in-
tended to aid United States Department of Defense (DoD) acquisition professionals. As the preva-
lence of suppliers using Agile methods grows, these professionals supporting the acquisition and
maintenance of software-reliant systems are witnessing large portions of the industry moving
away from so-called “traditional waterfall” lifecycle processes. The existing infrastructure sup-
porting the work of acquisition professionals has been shaped by the experience of the industry –
which up until recently has traditionally followed a waterfall process rooted in a hardware-centric
approach to system development. The industry is finding that the traditional methods geared to-
ward legacy lifecycle processes need to be realigned with new development methods that change
the cadence of work, and place new demands on the customer. This technical note aids acquisition
professionals who are affected by that realignment.

1.1 Scope

Our focus in this technical note is on metrics used and delivered by developers implementing Ag-
ile methods. In particular, we are concerned with Agile teams responding to traditional acquisition
requirements and regulations. Explanations and examples provide focus on progress monitoring,
and evaluation of status. We provide practical experience and recommendations based on lessons
learned by knowledgeable professionals in the field, as well as authors of influential books and
papers.

For the contract planning stages, we provide a means of evaluating the feasibility and relevance of
proposed measurements. Illustrations of common implementations and the range of metrics avail-
able provide context to professionals unfamiliar with Agile methods. For those unfamiliar with
Agile methods, we recommend earlier papers in this series as background [Lapham 2010, Lapham
2011].

During program execution, metrics support progress monitoring and risk management. Adequate
scope and converging perspectives in the set of metrics enable timely insight and effective action.
We provide insights into common gaps in the set of measures and effective ways to fill them.

Finally, evaluation of key progress indicators and diagnostic applications of metrics represent a
common theme throughout the paper. Efficiently converting collected data into information that
meets the needs of stakeholders is important to a measurement program. Novel implications of
Agile methods and unique needs of the DoD environment set the stage for this focused discussion.

1.2 Intended Audience

Our intent is to support program and contract management personnel “working in the trenches.” A
diverse set of interests are served by a paper that helps to span the (potential) gap between Agile
developers and traditional acquirers.

Our primary audience consists of program management professionals involved in tracking pro-
gress, evaluating status and communicating to government stakeholders. Often the person charged

CMU/SEI-2013-TN-029 | 2

with these responsibilities is a junior officer in one of the branches of the military or a civilian
who holds a GS12 to GS14 rank within the acquisition organization. These people frequently
must interact with representatives of the development organization to ascertain technical status,
and then communicate that to leadership in the acquisition organization. These individuals often
have training and experience in project management, and are well-versed in the rules and regula-
tions that govern the acquisition process. However, many of these skilled professionals are not
familiar with Agile development methods. As the graphic below depicts, these professionals
sometimes find themselves in the middle – between an innovating supplier and an entrenched set
of expectations that must be satisfied. The connections between the new ways of working and the
old ways of doing business may not be readily obvious.

 Figure 1: Audience

1.3 Key Contents

In Section 2, Foundations for Agile Metrics, we provide a brief introduction to Agile methods,
and comparisons to traditional methods that will aid the reader in understanding the remaining
sections of the report.

In Section 3, Selected Measurement Considerations in DoD Acquisition, we describe the regulato-
ry context in which Agile metrics must be implemented, along with a listing of categories of met-
rics that will need to be considered.

In Section 4, Agile Metrics, we begin the discussion of metrics that are specifically associated
with the Agile methods, illustrating with examples, the metrics typically used by Agile develop-
ment teams.

CMU/SEI-2013-TN-029 | 3

In Section 5, Progress Monitoring in Agile Acquisitions Using Agile Methods, we provide a de-
tailed discussion of metrics used to monitor the ongoing work of Agile development teams.

Finally, Section 6 provides a summary of the paper.

CMU/SEI-2013-TN-029 | 4

2 Foundations for Agile Metrics

2.1 What Makes Agile Different

Interest in Agile methods for delivering software capability continues to grow. Much has been
written about the application of methods with varying brand names. Lapham 2011 provides a
frame of reference for discussions of metrics here:

In agile terms, an Agile team is a self-organizing cross-functional team that delivers working
software, based on requirements expressed commonly as user stories, within a short
timeframe (usually 2-4 weeks). The user stories often belong to a larger defined set of stories
that may scope a release, often called an epic. The short timeframe is usually called an itera-
tion or, in Scrum-based teams, a sprint; multiple iterations make up a release [Lapham
2011].

The waterfall life cycle model is the most common reference when providing a contrast to Agile
methods. The intermediate work products that help partition work into phases in a waterfall life
cycle, such as comprehensive detailed plans and complete product specifications, do not typically
serve as pre-requisites to delivering working code when employing Agile methods.

2.1.1 Agile Manifesto

The publication of the Agile Manifesto is widely used as a demarcation for the start of the “Agile
movement” [Agile Alliance 2001].

Manifesto for Agile Software Development

We are uncovering better ways of developing

software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more.

Figure 2: Agile Manifesto

The tradition of developers’ irreverence surrounding the items on the right sometimes overshad-
ows the importance of the items on the left. Failed attempts to adopt Agile methods have occurred
through narrow emphasis on eliminating documentation, planning and the focus on process; with-

CMU/SEI-2013-TN-029 | 5

out understanding ramifications for the items on the left. A great deal of discipline is required to
consistently and successfully build high quality complex software-reliant systems.1 Professional
practices are required to demonstrate working software to the customer on a consistent basis, and
to embrace technical changes that result from these frequent interactions.

2.1.2 Comparison to Traditional Approaches

Like many things, a strict interpretation of methods such as we find in textbooks will often bear
only limited resemblance to the practice of people in the field. However, implementations of Ag-
ile methods generally differ from traditional approaches in the following ways:

1. Time is of the essence—and it’s fixed. In place of strict phase-gates with deliverables at the
phase boundaries, a fast-track time boxed approach to ongoing delivery of working software
is typical. Rather than formally evaluating intermediate work products like comprehensive
requirements or design documents, the customer is called upon to provide feedback on a po-
tentially shippable increment of code after each iteration. Establishing this fixed cadence is
considered essential.

2. Staff utilization is intended to be more uniform, rather than focused on phased use of special-
ty groups with formal transition of intermediate products from one state to another. (Consid-
er: the “ramping up” of test resources traditionally seen toward the end of the coding cycle
on a waterfall-based project.) The interdependence between different specialties (e.g., test-
ing, information assurance, and development) is managed within each iteration, rather than
using a milestone handoff to manage interfaces at a greater level of granularity. This self-
contained team is empowered to make more of the key product-related decisions—rather
than waiting for an approval authority to act during a milestone review.

3. An emphasis on “maximizing the work not done” leads to removing tasks that do not directly
address the needs of the customer. While the Agile Manifesto clearly states a preference for
working software over comprehensive documentation, this does not eliminate the need for
documentation in many settings. Agile projects do not tend to be “document-focused,” they
are “implementation-focused.”2 Balancing the ethos reflected in the manifesto with the busi-
ness needs of real customers may prove challenging at times – especially in a highly regulat-
ed environment.

These are the most prominent aspects of Agile methods that have an effect on the selection of
metrics used in progress monitoring. The detailed explanations and illustrations provided in the
remainder of this technical note can be traced back to one or more of these.

1 A soon-to-be-published technical note in this series will focus on systems engineering implications for Agile

methods.

2 A soon-to-be-published technical note in this series will focus on requirements in the Agile and traditional water-
fall worlds.

CMU/SEI-2013-TN-029 | 6

3 Selected Measurement Considerations in DoD Acquisition

In the SEI technical note Considerations for Using Agile in DoD Acquisition we discussed how
Agile could be used within the DoD acquisition life cycle phases. We introduced the discussion as
follows:

The DoDI 5000.02 describes a series of life cycle phases that “establishes a simplified and
flexible management framework for translating capability needs and technology opportuni-
ties, based on approved capability needs, into stable, affordable, and well-managed acquisi-
tion programs that include weapon systems, services, and automated information systems
(AISs) [Lapham 2010].”

Figure 3: The Defense Acquisition Management System [DoD 2007]

Figure 3 shows how acquisition currently works3. In brief, there are five life cycle phases, three
milestones and several decision points, used to determine if the work should proceed further.
Within each life cycle phase, there are opportunities to develop and demonstrate the capability
that is desired. As the acquisition progresses through the phases, options for system alternatives
are systematically identified and evaluated. As a result of this analysis, some potential solutions
survive, while others are eliminated. Eventually, a system configuration that meets stakeholder
needs is specified, developed, built, evaluated, deployed, and maintained. The technical note goes
on to say that there are opportunities to employ Agile methods within every lifecycle phase [Lap-
ham 2011]. This raises a question that should be considered when employing an Agile method in
any of the phases. What type of metrics should you be looking for or requiring from the contrac-
tor or organic staff in an Agile environment?

The simple answer is that the typical metrics that are always required by regulation (e.g. software
size, schedule, etc.) should be provided. That’s a simple answer, but what does this mean in an
Agile environment? For instance, typical development efforts in the Technology Development
and Engineering and Manufacturing Development phases may require the use of earned value

3 As of this writing, the publication process for an update to the 5000 series is underway, but not yet complete.

CMU/SEI-2013-TN-029 | 7

management (EVM) [Fleming 2000]. This concept is foreign to a typical Agile implementation.
The intent of the typical required DoD metrics needs to be met but Agile practitioners will want to
favor the use of data that are naturally created during the execution of the Agile implementation.
In the following paragraphs, we identify issues to consider in building an Agile program and its
related metrics program. We go into more detail for some of these in subsequent sections.

If the Project Management Office (PMO) is doing a request for proposal (RFP), no matter
which phase, ensure that the RFP contains language that allows the use of Agile. In many
instances, the traditional RFP language makes it difficult, if not impossible, to propose an Agile-
based solution. In many instances, EVM metrics are required. These are typically based on a plan
that is completed up front and rarely changes [Agile Alliance 2001]. If learning occurs that
changes the plan, both revision of the plan and the EVM milestones require a rigorous change
process. Agile implementations by definition allow and even embrace change. An Agile response
to EVM requirements could provide considerable amounts of data taken from a typical Agile im-
plementation, but that data would need to be interpreted and translated to compliance metrics. A
proposal to the government should provide information on how that translation would be accom-
plished and if missing, the government should request that information.

In addition, we heard from several of our interviewees that the government personnel need to in-
terpret the data provided to them. This in turn implies that the government personnel need to have
an understanding of the Agile metric data and what it does or doesn’t mean. Some basic training
in Agile concepts and definitions of Agile metrics would be in order if a government person was
to attempt this type of interpretation. A starting point could be a basic overview of traditional
software cost estimation followed by a description of story point estimation [Coelho 2012]. In
addition, when shifting to using Agile methods, there is also a shift (from the Agile perspective)
to focus on measuring business value delivered. This idea is critical in understanding the types of
metric data typically collected when employing Agile methods [Hartman 2006].

Be prepared to mine and effectively use the metrics data that naturally occur in typical Ag-
ile teams. In the acquisition life cycle phases, metrics are requested to monitor the state of the
program, that is, how much work is done, how much is left, what kinds of issues are there (num-
ber, severity, priority, etc.), and is the program on schedule. One interviewee pointed out that Ag-
ile programs are rich in metrics. Metric data is collected during each sprint or iteration. These oc-
cur frequently, usually every two to three weeks. Even if they are monthly, the resultant data is
plentiful. Data collected includes burn down and burn up charts; estimates for each sprint; back-
logs with priorities; continuous testing and integration metrics (percent passed, failed and related
issues); number of defects both found during the sprint and after the sprint completed; and inspect
and adapt data created during post sprint/iteration reviews. This abundance of data can provide
transparency into the state of the program.

Take advantage of the transparency provided in Agile processes. Don’t wait for the metrics
to come to you. Go look at what the Agile team is doing. Transparency is one of the key ideas
behind Agile usage. All stakeholders can tell what is going on at all times. In some instances, the
government is provided with access to the contractor’s tool set where all the metric data resides.
In other instances, the government requests specific reports from the tool on a regular basis. More
specific examples and discussion of progress metrics for programs using Agile methods will be
provided in Sections 4 and 5.

CMU/SEI-2013-TN-029 | 8

Keep abreast of the changing policy environment that affects metrics collection and use.
DoDI 5000.02 is currently undergoing an update. While this has yet to be published at the time of
writing this paper, early indications are that the new 5000.02 contains multiple models for acqui-
sition. The proposed Model 3, Incrementally Fielded Software Intensive Program, seems to be
aimed for use with programs that use incremental and iterative methods such as Agile. A full re-
view of this model needs to be accomplished once the updated 5000.02 document is signed and
released.

3.1 Specific Governance Requirements

Contractual requirements for monitoring performance typically specify areas of focus for metrics.
Government acquisition organizations operate within a framework of command media built to
protect the integrity and consistency of their operations. The table below lists typical examples of
requirements for metrics in contracts with two of the military services [USAF 2008, USA 2011].

Table 1: Sample Regulatory References4

USAF Software Core Metrics Army Regulation (AR) 70-1 Army Acquisition Policy

Software size
Software development effort
Software development schedule
Software defects
Software requirements definition and
stability
Software development staffing
Software progress (design, code and
testing)
Computer resource utilization

Section 7-13 Software Metrics: PMs will negotiate a set of software met-
rics with the software developer to affect the necessary discipline in the
software development process and to assess the maturity of the software
product. At a minimum, the metrics should address—

 Schedule and progress regarding work completion.

 Growth and stability regarding delivery of the required capability.

 Funding and personnel resources regarding the work to be per-
formed.

 Product quality regarding delivered products to meet the user’s
need without failure, as reflected in associated requirements
documents.

 Software development performance regarding the capabilities to
meet documented program requirements.

 Technical adequacy regarding software reuse, programming
languages, and use of standard data elements.

These requirements are written to allow flexibility in implementation—to fit the scope and nature
of the contract at hand. For some of the metrics listed, Agile alternatives are available—such as
software requirements definition and stability—and need to be specified in the contract if they are
to be used. For other metrics—such as staffing levels—the traditional metrics used may be well
suited, but the range of variation in the metrics over time may differ (successful Agile teams tend
to have a more stable staffing profile over time than teams using traditional approaches). Finally,
there may well be metrics needed in monitoring the progress of a contract that are beyond the fo-
cus of Agile methodologies. Managing different funding streams, specialized labor categories,
and highly specialized technical performance or regulatory requirements are just a few such ex-
amples. The intersection of traditional monitoring approaches and Agile development approaches
may be more challenging in these areas.

4 These references are used for the purpose of illustration, not to imply that all regulations are encompassed by

these examples. Such illustrative examples are also available from other services and agencies as well.

CMU/SEI-2013-TN-029 | 9

In the latter sections of this technical note, we describe specific examples of Agile metrics, and
discuss important considerations for their use. Note that while Agile methods bring new ways of
doing work, they are not intended to serve as a panacea for all concerns and priorities of the gov-
ernment acquisition environment (i.e., agile is not a silver bullet).

3.1.1 Earned Value Management; Cost and Schedule Monitoring

Nearly ubiquitous in the government acquisition realm, earned value management systems
(EVMS) provide a means for monitoring cost and schedule performance, and support projections
of future performance based on history of performance to date [EIA-748]. Alleman, in discussing
Agile development in government acquisition, reminds us of a common reality in this realm:

Contract progress payments are based on “earned value” for the accounting period and
therefore are considered our “rice bowl,” something you simply do not mess with” [Alleman
2003]

A formal treatment of the application of EVMS in the context of Agile methods is found in the
2006 publication on Agile EVM by Sulaiman, Barton, and Blackburn. These authors provide a
mathematically rigorous basis for applying EVMS with Agile methods, then report on their expe-
riences using the approach on two projects [Sulaiman 2006].

The use of EVMS is not required on all types of contracts; in particular, smaller efforts may tend
to rely on alternate approaches. Under the 2008 DoD policy

 EVM compliance is required on cost or incentive contracts, subcontracts, intra-government
work agreements, and other agreements valued at or greater than $20 million.

 An EVMS that has been formally validated by DCMA and accepted by the cognizant con-
tracting officer is required on cost or incentive contracts, subcontracts, intra-government work
agreements, and other agreements valued at or greater than $50 million.5

However, schedule and cost containment is clearly important in any acquisition setting. Metrics
described in Section 5 will address this in more detail.

3.1.2 Delivery and Quality Monitoring

Traditionally, delivery is tied to major milestones on the timeline written into a plan. Work prod-
ucts are enumerated and specified in advance, and these deliverable items are evaluated at those
milestones. The milestone often provides a gate that enables (or prevents) progress into the next
phase—and, like the EVMS discussion above, payment is often tied to this progress. Therefore,
metrics reported and analyzed during these “capstone events” play an important role in assessing
quality and confirming acceptance of deliveries.

By contrast, Agile methods emphasize continual delivery and inspection. The full value of rapid
feedback and reprioritization of requirements is enhanced by a continual approach, rather than a
phased approach to delivery. Lapham 2011 describes two alternatives for resolving this:

Progressive Technical Reviews: is an iterative approach to implementing these capstone
events. Only one event of record exists, but it is carried out in successive waves that build on

5 http://www.acq.osd.mil/evm/faqs.shtml

http://www.acq.osd.mil/evm/faqs.shtml

CMU/SEI-2013-TN-029 | 10

the previous reviews. In this fashion, the intent of the milestone review is realized, but in
gradual fashion, rather than at a single point in time.

Multiple Mini Quality Reviews: allow the conduct of quality reviews at a more detailed
scope of the product (e.g., for feature teams developing part of a capability) and these more
frequent, more detailed reviews are considered as input to the single capstone event held ac-
cording to the preset schedule [Lapham 2011].

These approaches strive to balance the needs of the acquisition process and the benefit of more
frequent (and more detailed) interactions associated with Agile methods. Metrics described in
Section 5 of this technical note play an important role in the process, regardless of the approach
selected.

3.2 Tools and Automation in Wide Usage

Modern software tools available to support team collaboration during Agile development provide
a wide range of customization and data capture options. These life cycle management tools model
workflow and provide extensive communication features as well as configuration management
functions. Some organizations manage detailed communications among developers using these
tools—rather than relying on email to document important information.

Depending on the scale of the effort and the experience of the development teams with the tool
suite, a variety of automated reports or custom queries may be available to support progress moni-
toring and analysis of critical events on a contract. Direct access to these tools for monitoring pro-
gress can greatly increase visibility for the acquisition professional willing to learn the interface
and implementation choices made by the development organization. Whether requesting standard
reports defined by the development organization, or performing ad hoc queries and analyses
themselves, availability of the detailed “raw data” can be powerful. The graphs presented in Sec-
tions 4 and 5 of this technical note are easily generated from many of these tools.

One area of particular focus for automation, especially in larger software development programs,
is testing. Automated testing tools support activities like unit testing and regression testing, to
enhance the ability of the development team to retain confidence in the evolution of the capability
without compromising the integrity of the code baseline. Agile methods include unit testing as
part of development—rather than consider it a separate step in the process per se. As well, a rig-
orous focus on acceptance criteria—typically viewed as a component of the requirements—means
developers can gain great leverage through use of effective tools for automating testing [Cohn
2004].

For defects discovered later in the process—during integration for example—the Agile team is
able to better manage the potential impact on progress when automated test suites are built and
maintained over time, rather than implemented “manually.” The ability to perform regression test-
ing in a modern test environment enables a more thorough approach, while freeing the develop-
ment team to focus on building a high quality product. This brings an emphasis on testing as a
quality-enabling activity rather than a milestone to be achieved. Because of these and other im-
plementation differences found in Agile methods, the metrics used to monitor progress may reveal
a different emphasis when compared to traditional approaches. These are highlighted and dis-
cussed in Sections 4 and 5 of this technical note.

CMU/SEI-2013-TN-029 | 11

4 Agile Metrics

One of the experts interviewed for this technical note offered the following insight:

When the sponsor of a project gets a plan from the developer (whether they are an internal
provider or an external contractor), they traditionally think of that as an exchange of risk.
The plan is seen as a commitment to successfully build the product, and the developer—
having planned the project—now assumes the risk. The sponsor mistakenly presumes that
this commitment protects his/her interests. The reality is, if the project is late, or the product
does not meet user expectations, the sponsor (not the developer) always owns the risk of
market consequences (Interviewee #6).

This explanation sets the stage for perhaps the most important emphasis on metrics for Agile
software development—measuring delivered value. Merely tracking to a plan is not sufficient to
manage risk. Thoughtless allegiance to the original plan, in fact, could assure failure if market
conditions (mission parameters) or assumptions made while building the plan have changed. The
iterative nature of Agile methods protects sponsors and developers from this trap.

Traditional implementations of earned value management systems attempt to protect against a
cost and schedule only focus by ascribing value to the completion of tasks in the work breakdown
structure. As these tasks are completed, the project sponsor gains a view of work accomplished.
The amount of value attributed to each completed task is based on the estimated effort for that
task.

To be fair, progress monitoring must always rely on proxies for value, as the true worth of the
developed system is not realized until it is placed in operation and users gain the benefit of its op-
eration. However, the choice of proxies has an effect on the amount of insight gained—as well as
the potential for unintended consequences. In general, Agile methods place a great deal of empha-
sis on “delivering working software” over other outcomes. For this reason, the proxies used as
metrics in progress monitoring tend to relate more to the outputs of the work than the process used
to complete the work. Metrics driven by story points, direct customer feedback, and products or
defects as they flow through the development process (such as velocity, or customer satisfaction)
are more common than metrics reflecting parameters of the process (such as schedule perfor-
mance index, or estimate to complete).

Because schedule is fixed based on the cadence established (and agreed upon with the customer),
progress monitoring tends to focus more on the amount of product delivered and the amount re-
maining to be delivered. This is not to say other measures aren’t used. However, the traditional
emphasis on projecting the end date and the likelihood of a cost-overrun tends to be de-
emphasized in favor of understanding what the team is building and delivering to the customer
when using Agile methods. In Agile, a question more common than “how late will we deliver?” is
“which features have to be deferred if we run into unanticipated problems?”

In Section 4.1 we familiarize the reader with some basic, common metrics used in Agile projects.
Then we will explore more advanced uses and interpretations of them in Section 4.2.

CMU/SEI-2013-TN-029 | 12

4.1 Basic Agile Metrics

Three key views of Agile team metrics are typical of most implementations of Agile methods:
velocity, sprint burn-down, and release burn-up. We present each of these below in their most
basic form for the audience not already familiar with these cornerstones of Agile measurement. It
is worth noting that metrics used in Agile development contexts tend to focus primarily on the
needs of development teams, rather than on the status of a project or program.

4.1.1 Velocity

Simply stated, velocity is the volume of work accomplished in a specified period of time, by a
given team. Typically, this is measured as story points accomplished per sprint. This measure is
sometimes called “yesterday’s weather” by Agile practitioners [Alleman 2003], as if to indicate
its sensitivity to local conditions as well as seasonal trends. Indeed most experts explain that ve-
locity is “team-unique” and thinking of this measure as a parameter in an estimating model is a
mistake. The team must establish its own velocity for the work at hand [Sliger 2008]. In addition,
there are metrics associated with trends and stability of velocity—over time and/or across varying
conditions. Elaborations, extensions and cautions are discussed later, but first—the basics.

The height of each bar in Figure 4 is the velocity for that sprint. Looking at this information, ex-
pecting this team to deliver 50 story points on the next sprint would seem unrealistic, since the
team’s previous highest velocity had been 35 story points in sprint 6. Conversely, a workload of
just 15 story points would likely underutilize the talents of the team. For another team, or this
same team working on a different product (or under different conditions), the expectations may be
very different.

Figure 4: Sample Velocity Column Chart

Looking at the fluctuations in the height of the columns in Figure 4, we see a trend in gradual im-
provement across the first few sprints, then velocity fluctuates by one or two points for the rest of
the sprints shown.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8

Story Points
Delivered by

the Team

Sprint Number

Bar Chart of Velocity

CMU/SEI-2013-TN-029 | 13

In this fictional case, the ‘back-story’ could be this is a new team, finding their way in a self-
directed mode. During the first few sprints, some members were learning how to work with sto-
ries, and the process of testing against the “definition of done.” A bit of cross-training occurred—
where those with more experience in testing coached novices in writing test cases. In addition, the
use of the collaboration tools evolved as they experimented with preferences in the interface set-
tings. The graph illustrates a concept called “velocity lag” which is discussed later in section
4.2.1.2.

The definition of velocity seems deceptively like a productivity measure, and many mistake it for
that. However, the traditional uses of productivity measures are left wanting when velocity is con-
sidered—as the motivation to standardize the calculation (fixing the basis of estimates and stand-
ardizing across teams) runs counter to tenets of Agile methods. Velocity is a local measure, used
by an individual development team to gauge the realism of commitments they make. The velocity
metric is logically tied to the sprint burn-down chart, discussed next.

4.1.2 Sprint Burn-Down Chart

This graphical technique provides a means of displaying progress for the development team dur-
ing a sprint. As items in the backlog of work are completed, the chart displays the rate and the
amount of progress. This chart is typically provided for viewing on a team’s common wall, or
electronic dashboard. Many elaborations and alternative implementations are seen in practice, but,
again – first the basics.

Figure 5: Sample Sprint Burn-Down Chart

Typically a line graph like the one in Figure 5, showing a decline in the remaining backlog items
to be completed, is used. The workload chosen for that sprint (often called the sprint backlog) is
reflected on the vertical axis—in story points for this example. A line sloping downward from left
to right—with time depicted (in days) on the horizontal axis—shows the pace of work being com-
pleted. The dotted line shows the “ideal line” against which the thicker line can be compared. It is

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

Story Points
Remaining in

the Sprint
Backlog

Days in the Sprint

Sprint Burn-Down Chart

CMU/SEI-2013-TN-029 | 14

easy to relate this depiction to the completion of tasks remaining—or story points to be deliv-
ered—for the sprint. In this sample chart we see a noticeable change in rate for the accomplish-
ments of day 6, because the story points remaining on day 7 do not appear to have gone down as
much as in previous days—the “ideal line” also helps to highlight this. Such a data point may re-
veal that the team encountered an impediment to progress, which was addressed at that time.
However, without more direct interaction with the team, that is just a guess. Like metrics in tradi-
tional environments, Agile metrics provide a starting point for a discussion, rather than providing
a final answer by themselves.

4.1.3 Release Burn-Up Chart

A complementary graphical technique for the sprint burn-down, the release burn-up chart is also
commonly used. Many cling to the convention that sprints burn down and releases burn up—
though there is no mathematical principle that governs this choice.6 With each completed sprint,
the delivered functionality grows, and the release burn-up chart depicts this progress in an intui-
tively logical fashion. Here again, workflow management tools, and many extensions of the con-
cept are in use—but first, the basics.

Figure 6: Sample Release Burn-Up Chart

This chart, too, is typically presented as a line graph showing accumulation of delivered value—in
this case as story points—on the vertical axis. Time is depicted on the horizontal axis (by listing
the sprint number), and a line sloping from the bottom left to the upper right of the graph depicts
progress. As shown in Figure 6, a line at the top of the graph is typically used to represent the to-
tal number of story points planned for the release. This can also be used to depict changes in the
planned content of the release (increases or decreases in scope). The viewer is led to think about
the upward-sloping line intersecting with the top line, at or before the right edge of the graph
(here again, the “ideal line” is shown as a dashed line in the graph). Many extensions of this rep-

6 This is a paraphrase from one of our interviewees.

0

50

100

150

200

250

1 2 3 4 5 6 7 8

Story Points
Delivered

Sprint Number

CMU/SEI-2013-TN-029 | 15

resentation are seen in practice—including the depiction of a “cone of uncertainty” drawn around
the progress line, which reveals a widening level of uncertainty over time. [Cohn 2006].

4.2 Advanced Agile Metrics

In the sections that follow, the basic metrics described in Section 4.1 are elaborated further, and
extensions to the basic approach are described. The purpose of these discussions is to provide the
reader with insights that aid in the interpretation of metrics presented by the development organi-
zation. We summarize tell-tale signals that can be gleaned from the metrics reports and provide
some interpretive guidance. The examples in this section assume that story points are used for
team estimation and tracking.

4.2.1 Velocity Metrics

Self-directed development teams commit to a sprint goal with associated user stories and success
criteria. The story point estimates established by the team must be sufficient to provide a confi-
dent basis for committing to a series of sprint goals. The team sets a new goal at each sprint, in
light of recent experience on previous sprints. The first few sprints may reflect learning by the
team, as velocity may vary more while the team learns to work together.

Velocity (the number of story points delivered on a given sprint) is a metric primarily intended to
guide the development team itself to understand the realism in delivery commitments. The feed-
back provided at the end of each sprint informs the planning for the next sprint. Adjustments in
the level of commitment and a focused scrutiny of the workload promote deeper understanding of
what is achievable. The point of monitoring velocity is not to promote on-going increases in
productivity. Rather, the point is to assist the team in consistently operating with achievable
commitments—and achieving those commitments. This mindset will aid the acquisition personnel
in making beneficial use of this metric. The fundamental question to be answered by looking at
velocity boils down to “is the team meeting its commitments?” The following discussions address
typical uses of velocity and common patterns observed in practice.

4.2.1.1 Diagnosing Velocity Trends

During initial formation and startup, a new development team will observe fluctuations in velocity
due to a variety of learning effects. Inexperience with relative size estimates, learning to account
for new or different tasks, coping with defects discovered in later sprints, and planning for archi-
tecture or design work outside of a sprint are some contributors to common trends in velocity.
While mundane, the team also needs to learn to include things like vacations and holidays. These
can be planned for but are sometimes overlooked by inexperienced teams (inexperienced in plan-
ning that is). A skilled coach can help to navigate uncertain waters when the team is in the early
learning stages. Measures involving story points and velocity serve as a basis for a number of dif-
ferent metrics used in Agile development. It is important to understand the maturation of the team,
and the consequence of the learning process on those metrics.

CMU/SEI-2013-TN-029 | 16

Relative Size
The accepted approach to estimation in Agile methods, using story points (or ideal days7) as the
basis, involves judging the size of the planned deliverables relative to each other. This is in con-
trast to other, absolute, estimation methods that rely on proxies like function points or lines of
code—where an initial calibration is required for “correct” estimates to be produced. Cohn pro-
vides a clear and comprehensive discussion on the use of relative estimates in Agile development
[Cohn 2006].

The value placed on limiting ceremony and documentation means the estimation process too is
oriented to deliver needed value with the minimum of overhead. This means that teams early in
the use of Agile methods may show more variation in velocity than a more seasoned team that has
more experience in performing relative estimation within the context of the project at hand.

Unforeseen Tasks
A fully cross-functional Agile team enables all tasks—from requirements analysis, architecture,
design, coding, to testing—to be performed within the development team, rather than relying on
specialized external groups (e.g., separate groups of business analysis, coders, and testers). For
some, this is a dramatic change from previous ways of doing work. This aspect of the learning
curve for adopting Agile methods may contribute to false starts or real-time adjustments of tasks
and roles after the team has begun to work.

Like other perturbations to the team’s pace of work, the adjustments to the work routine that come
with adoption of Agile methods may be visible in the velocity of the team. The first two or three
sprints may be unduly influenced by minor adjustments occurring in real time. The stable delivery
performance of the team may not be seen until these transient causes of lower velocity are sys-
tematically eliminated. Here again, a skilled coach helps to navigate uncertain waters for the team
early in its experience with Agile methods.

Defect Handling
Discovering and correcting defects is typically handled one of two ways in Agile development:

1. Testing and defect fixing entirely within sprints by the team, which does coding and testing

2. Testing conducted by a test team working in parallel with the development team(s)

Most who learn Agile methods are told that testing is part of the development done within a
sprint. The team delivers “potentially shippable software” from each sprint, so testing is done be-
fore the sprint can be considered complete. We have seen teams who choose to write “test stories”
or “integration stories” in order to account for this testing work. It is also common for acceptance
criteria for a user story to serve as the requirements for test cases. Other teams we have seen
budget a flat level of effort (e.g., 10 percent of the story points, and therefore 10 percent of the
time) in each sprint to account for work that must be done to resolve defects from previous
sprints. We caution the reader against accepting this as a rule of thumb—as each team needs to
learn about its own velocity. Teams we have seen who manage defect discovery and resolution

7 Ideal time is the amount of time that something takes when stripped of all peripheral activities. When we esti-

mate the number of ideal days that a user story will take to develop, test, and accept, it is not necessary to con-
sider the impact of the overhead of the environment in which the team works [Cohn 2006].

CMU/SEI-2013-TN-029 | 17

within a sprint do not tend to record defect counts or track time spent fixing defects discovered
and resolved within a single sprint.

For larger systems, developed over the course of years by a collection of Agile teams, a different
strategy for handling testing and defects may be needed. In examples we have seen, unit testing
remains the responsibility of developers within a sprint. Integration testing, however, was per-
formed by a testing team working in parallel with the development teams. Successful organiza-
tions that take this approach have run the test team using Agile principles, and engage the testing
team and the development teams collaboratively. Keeping the tested baseline and the develop-
mental baseline from diverging too much can become a technical challenge in this case. New fea-
tures built against outdated baselines may not be adequately tested. If the testing team falls be-
hind, the development teams will be forced to either wait for the new baseline (stop work) or
proceed at risk (developing against an old baseline). Neither choice is ideal, so the backlog being
worked by the test team is monitored very closely. For some defects, it may be possible for mem-
bers of the testing team to propose a fix that can then be more quickly implemented by the devel-
opment team. However, for most major defects, one of the development teams will have person-
nel with familiarity and recent experience needed to address the defect—and fixing the defect will
become an item in that team’s backlog. If severe issues are encountered during testing, it is possi-
ble that the work performed to resolve defects displaces the work to continue developing the
product. One particular team we saw struggling with this risk used weekly coordination meetings
of all development teams and the test team to monitor progress. The status of the “next integrated
baseline” was a standard agenda item in these meetings. Defects in the backlog as well as new
stories in the backlog were sometimes deferred to a later sprint, if related functionality was not yet
present in the baseline.

Figure 7: Sample Defect Burn-Up Chart

Monitoring metrics on the “defect backlog” is essential in this case—as early-warning signs ena-
ble corrective action before the team is overwhelmed with quality issues. Figure 7, above, shows a
variant of the release burn-up chart that can be used to track the defect backlog. Note that the top

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8

Defects in the
Defect Backlog

Sprint Number

Cumulative Open
Defect Count

Cumulative Closed
Defect Count

Defect Trend Line

CMU/SEI-2013-TN-029 | 18

line tracking the cumulative open defect count increases as the workload for defects “escaping
into the next release” continues—while the bottom line tracking cumulative closed defect count
reveals the progress in closing defects in each sprint. The dotted trend line supports a projection
for the final sprint (yet to completed) in the figure. The discussion of cumulative flow diagrams in
Section 4.2.2 describes another way to track work on the defect backlog. Many Agile coaches
have ways of monitoring for testing-related dynamics, and triggering events and actions to pre-
vent rework from overwhelming development.

Handling Spikes
The term spike is used to describe:

… a task included in an iteration plan that is being undertaken specifically to gain
knowledge or answer a question [Cohn 2006].

Others may use this term more loosely, to also include brief tasks focused on resolving a design
issue, or elaborating the product architecture as needed. In any case, spikes are time-bounded ac-
tivities performed to achieve a particular goal. A spike may be defined after a release plan is in
place. They may displace some of the workload for an upcoming sprint. A skilled coach will have
strategies for balancing competing needs.

In progress monitoring, the impact of adding spikes and the value they return to the development
effort must be understood. The team must maintain the discipline of “time-boxing” when electing
to use spikes to address issues. Examining metrics on spikes, such as planned and actual duration
of each spike, as well as the number of spikes occurring in each reporting period will reveal how
well the team is managing its use of spikes. Conducting too many spikes will block development
progress—as revealed in the velocity metric, or the release burn-up chart. Doing no spikes may
undermine the team’s ability to embrace customer-driven change or improve the product based on
feedback. This consequence may be seen in customer satisfaction metrics collected during sprint
reviews or in release retrospectives.

4.2.1.2 Velocity Lag

Teams growing accustomed to working together, or those hampered by a common obstacle, may
display a pattern in the velocity of sprints whereby a gradual rise in velocity is seen in the first
few sprints (or those following a process improvement) that reflects the learning of individuals
working with new conditions or people. This has been termed “velocity lag” by some, as the true
performance of the team is realized after an initial lag in performance—while the team acclimates
to the working conditions and rises to their potential as uncertainties are resolved. We’ve been
told that teams typically take three sprints to get to “their velocity.”

Organizations unfamiliar with Agile methods may flounder during this period, and attempt coun-
ter-productive corrective actions. One counter-productive pattern is seen when new staff are add-
ed to the team continually, in hopes of achieving a target velocity. Especially early in the effort,
new team members create a potential ripple effect as they seek interaction with fellow team mem-
bers to orient themselves in their new role. If the staffing on a team is fluid during the initial
sprints in a release, then the natural pattern of velocity lag may be confounded by state of flux in
the team. It is possible to prevent the team from realizing its potential velocity by continually
changing staffing. Monitoring metrics for velocity and staffing levels—together with the burn

CMU/SEI-2013-TN-029 | 19

down and burn up charts—will reveal clues that such an issue may need to be addressed. Such
detailed staffing-related decisions are not typically the responsibility of the contract monitoring
professional. However, the metrics serve to confirm (or call into question) the success of the de-
velopment organization in managing issues encountered.

4.2.1.3 Coefficient of Variation

According to one of our interviewees, the coefficient of variation (CoV) provides insight about
the stability of a team’s velocity—an indication that they have found a steady state of perfor-
mance. The coefficient of variation is computed as:

Coefficient of Variation= (Standard Deviation / Average) * 100

We heard about the use of this statistic as a method for analyzing variation in velocity while con-
trolling for differences in average performance. The method requires positive numbers (which
shouldn’t be a problem for most analyses of velocity), and there are statistical tests available to
compare teams or trends over time.

The CoV was used to analyze a large amount of performance data from Agile teams, as a means
of differentiating teams that are struggling from the rest of the pack. For a team working with a
good cadence, with good quality input (i.e., well-defined user stories) the velocity from sprint to
sprint is expected to be stable. Computing the CoV for the three most recent sprints, and monitor-
ing that statistic over time will provide insight about how well the team is performing with respect
to their business rhythm.8 Events that disturb this rhythm will be confirmed by their effect on the
variability in this key team metric—velocity. Again, the responsibility to make focused manage-
ment decisions to maintain this rhythm rests in the development organization, but monitoring this
metric helps the contract monitoring professional build confidence in performance.

As we will see in the discussion of EVMS in Section 5.8, the average velocity across the sprints in
a given release is a key element in computing AgileEVM metrics. The CoV can be used to under-
stand how reliable the average velocity is—with higher values of the CoV indicating that the av-
erage velocity may be less reliable and low values of the CoV indicating that it is safer to use the
average velocity as a measure that typifies team performance across the sprints.

8 This is a specific recommendation from one of our interviewees.

CMU/SEI-2013-TN-029 | 20

Figure 8: Coefficient of Variation Example

The figure above illustrates a method for comparing the fluctuation of velocity for two different
teams using the Coefficient of Variation (CoV). The performance depicted in the left panel shows
a greater degree of fluctuation in velocity across the 8 sprints than seen in the panel on the right.
Visual inspection of the column charts reveals that the velocity of the team on the left varies by 10
points or more from one sprint to the next. The velocity of the team on the right, by contrast, only
fluctuates by 2 or 3 story points from sprint to sprint. As an acquisition professional monitoring
the performance of these two teams, which team would you expect to provide a more reliable es-
timate for sprint 9? Both of these teams have an average velocity of 30, and they have both deliv-
ered 240 points thus far. However, the team depicted on the right appears to be more predictable.
The smaller value of CoV for the team on the right helps to quantify this difference9.

4.2.2 Flow Analysis

The cumulative flow diagram is a data visualization technique that comes from the Lean Product
Development field [Reinertsen 2009]. This technique provides an effective means for monitoring
performance from a variety of perspectives and is starting to see greater use among Agile devel-
opers. The technique brings a focus on work items that go through a set of state transitions and
allows the user to count items in each state and evaluate the time items spend in each state, there-
by identifying possible bottlenecks and risky logjams in the process.

To illustrate this technique, consider a very simple life cycle comprising four different states:

1. Ready: The customer stakeholder has written and/or reviewed the user story, the team has
reviewed it to determine its size and to seek any needed clarifications or elaborations, and
the story is ready to be selected for inclusion in an upcoming sprint.

2. Coding: Having been identified as one of the highest value stories in the backlog, the story
has been selected for inclusion in a sprint, and the team is now working to implement it.

9 In this example the value of the standard deviation would suffice as well, because the two teams have the same

average velocity. The Coefficient of Variation provides a more robust basis for comparing fluctuation when the
averages differ.

CMU/SEI-2013-TN-029 | 21

3. Testing: Having completed all development work, the code written to implement this story
is currently being tested

4. Done: Having successfully passed all tests, this code is potentially ready to ship.

Given the above (simplistic) life cycle description, a backlog of user stories that makes up 30 sto-
ry points can be depicted using the four color-coded zones on a chart. The graph in Figure 9 rep-
resents the allocation to the four different states at a given point in time. In this fictitious example,
it can be seen that only one-third of the total story points remain in the “Ready” state.

Figure 9: Sample Stacked Column Chart

In the next chart, the display is expanded to show all six weeks in the release cycle. For this ficti-
tious example, the team is using two-week sprints, and status reports are compiled weekly. There-
fore, this is a release with three sprints spanning a total of six weeks—to deliver 30 story points of
working software.

9

7

4

10

0

5

10

15

20

25

30

Number of
Story Points

Ready

Coding

Testing

Done

CMU/SEI-2013-TN-029 | 22

Figure 10: Sample Cumulative Flow Diagram

This display reveals a number of important performance metrics worth monitoring:

First, the number of story points in the coding and testing states—combined (often referred to as
“work in process”) appears to follow a fairly consistent pattern from week to week—each of the
first four weeks show 10 to 12 points total, with the last two focused on a few remaining stories.
One important principle in Agile methods is to maintain a small number of items in the work in
process queue [Anderson 2010]. When the work in process grows substantially, it is a sign that
the team may be stuck on some things, which remain unfinished and starting on others to keep
moving. As the number of things set aside grows, so does the risk that the developers will never
have time to get back to them. (A particularly risky example of this is when a backlog of deferred
defects grows into a bow wave that swamps the team.)

Second, the steady increasing pattern in the number of story points that are “done” in this example
shows a consistent rate of progress. However, the number of points done at the end of week four
was only three more than the number done at the end of the previous week. The team would have
examined their velocity—the number of story points delivered—to diagnose the pace of work and
why it declined. Identified impediments might lead to process improvements intended to prevent
that source of delay in the future.

4.2.2.1 Elements of the Cumulative Flow Diagram

With the above specific example in mind, the fundamental elements of this display technique are
described here for more general understanding. A more complete elaboration of these (and relat-
ed) principles can be found in Reinertsen.

The idealized picture in Figure 11 (below) illustrates a very steady pace of work entering the “In
Process” state, and leaving the “In Process” state. The slope of the upper edge of the central
(green) band depicts the rate at which work items enter the “In Process” state, while the slope of
the lower edge of the central (green) band depicts the rate at which work items leave the “In Pro-

0

9

15
18

26
29

0

7

5

5

3
1

10

4

7
6

1 0

20

10

3 1 0 0

0

5

10

15

20

25

30

1 2 3 4 5 6

Number of
Story Points

Weeks in the Release Cycle

Ready

Coding

Testing

Done

CMU/SEI-2013-TN-029 | 23

cess” state. In this example, they appear as parallel lines because work items are completed at the
same pace as new items are started.

Figure 11: Sample Cumulative Flow Diagram – Fixed Pace of Work

Two more very useful pieces of information are available from this Cumulative Flow Diagram as
illustrated in the arrows overlaid on the graph—the cycle time for items in process as well as the
number of work items in process at any point in time. The horizontal double arrow depicts the
average time required for an item to work its way through the in process step, and the vertical ar-
row depicts the number of items currently in process at the point where it is drawn. From this first
simple graph, we can see that the cycle time is consistently one time unit (a distance on the hori-
zontal axis) while the number of items in process is consistently two work items (a distance on the
vertical axis). Such a steady pace of work and consistent workload is not typical.

The two graphs in Figure 12 illustrate graphical indicators that aid in the diagnosis of workflow
issues.

0

2

4

6

8

10

1 2 3 4 5

W
or

k
Ite

m
s

Time

Waiting

In Process

Done

CMU/SEI-2013-TN-029 | 24

Figure 12: Sample Cumulative Flow Diagram – Illustration of Workflow Issues

In the graph on the left, the rate at which new work is taken into the in process state varies—and
the work in process goes to zero at time 2 and time 4. This indicates that the personnel doing that
work may be sitting idle while waiting for some prerequisite to complete before working on new
items (e.g., waiting for customer sign off on a user story). In contrast, the graph on the right shows
a growing backlog of work as the rate of items leaving the in process state is not keeping up with
the rate at which work items enter that state. This may be indicative of a pattern in which new
work items are accepted before current work items are completed (e.g., staff “get stuck” and can’t
proceed, so they take up new items so they don’t sit idle).

4.2.2.2 Many Applications for Cumulative Flow Diagrams

As a tool for displaying and analyzing metrics, the cumulative flow diagram has numerous poten-
tial applications. For example, this display can be used to:

1. understand the flow of development work to implement user stories—serving as a comple-
ment to a series of sprint burn-down and release burn-up charts used by the team

2. track the progression of new user stories as they evolve during the life of the project—
showing a parallel stream of work to the one mentioned above

3. monitor the execution and completion of test cases (including pass/fail and retesting) during
major testing activities

4. assess the discovery and resolution of defects over the life of the project or within specific
major test phases

5. monitor the handling of impediments reported by the Agile development team—which can
relate to the team’s ability to achieve its ideal cadence of work (as measured with velocity)

The influence of “Lean Thinking” deriving from manufacturing research has contributed greatly
to analyzing flow in this way [Womack 1996]. A slide set provided by Yuval Yeret offers a tuto-
rial on cumulative flow diagrams that extends the discussion provided here.10

10 Please refer to http://www.slideshare.net/yyeret/explaining-cumulative-flow-diagrams-cfd. Another useful refer-

ence is available at http://brodzinski.com/2013/07/cumulative-flow-diagram.html

0

2

4

6

8

10

1 2 3 4 5

Waiting

In Process

Done

0

2

4

6

8

10

1 2 3 4 5

Waiting

In Process

Done

http://www.slideshare.net/yyeret/explaining-cumulative-flow-diagrams-cfd
http://brodzinski.com/2013/07/cumulative-flow-diagram.html

CMU/SEI-2013-TN-029 | 25

5 Progress Monitoring in Acquisitions Using Agile Methods

The subject of estimation for Agile development is discussed in Lapham 2011, including consid-
erations for acquisition strategies and participation of government personnel as subject matter ex-
perts. Commonly used software tools for estimation and planning allow users to adjust parameters
that account for differences in the methods used, as well as the capabilities and experience of de-
velopment staff. Use of such tools (e.g., Price-S, Software Lifecycle-Management Estimate
[SLIM], Constructive Cost Model [COCOMO], or Software Evaluation and Estimation or Re-
sources [SEER]) will not be discussed here.

In the sections that follow, eight major categories of progress tracking metrics are discussed.

1. software size

2. effort and staffing

3. schedule

4. quality and customer satisfaction

5. cost and funding

6. requirements

7. delivery and progress

8. Agile earned value management system

5.1 Software Size

As a progress monitoring metric, the size of the product is often of interest in traditional develop-
ment approaches because it is used as a leading indicator for the eventual cost and schedule. In
Agile approaches, the preference is to fix cost and schedule, using a time-boxed approach [Ander-
son 2010]. When you establish a steady cadence of work—with predictable cost—your goal shifts
to maximizing the amount of customer-valued functionality that is delivered. From this viewpoint,
size becomes a variable attribute rather than a fixed starting point. Using the customer’s prioritiza-
tion, the team strives to load-balance the release by selecting the highest priority stories that will
fit into their established capacity (the size of the funnel depicted in Figure 13). The association of
stories with system capabilities is a useful way to provide context for interpreting accomplish-
ments—when considering a broader perspective rather than the focus of the development team, as
discussed here.

CMU/SEI-2013-TN-029 | 26

Figure 13: Estimating Workload for a Single Sprint

The relative size of each user story (all of the circles shown above) then becomes a source of in-
formation used by the development team to enable the customer to consider alternative sequences
and groupings. Alternatives like:

 implement the most visible features in each capability, so users can see them as prototypes to
be elaborated or refined

 choose the most important capability and build it first so that a partial system can be fielded
to meet pressing needs, and the remainder can be added incrementally

 implement capabilities that represent the infrastructure needed to field other capabilities

In this process of considering alternatives, the size of the story is an enabler for judging feasibility
of short-term options—not a basis for a larger forecast.

In tracking the progress of the team, the focus is on their ability to meet the commitment to deliv-
er the working increment of software. Therefore, the correspondence between the number of story
points planned and the number delivered becomes the focus, and not just a measure of what is
delivered. Size is used here to help the team understand its capacity. Discussions of velocity pre-
sented earlier apply here. The size metric serves as a basis for diagnosing the performance of the
team. When multiple development teams work to build a large system, it is important to under-
stand that the story point is typically calibrated to individual teams—rather than being a proxy
calibrated across teams. This may present a challenge to government acquisition staff who are
unaccustomed to working with Agile development teams.

If a team consistently falls short of their targets for delivered story points, it is an indication that
the scope of work may not be sufficiently understood, or that the capability of the team is not
viewed realistically. A comparison of planned and actual velocity for each sprint, as well as the
coefficient of variation (described earlier) for velocity, represent size-related metrics that contrib-
ute to diagnosing team performance. This type of diagnosis is typically performed by the team,
working with its coach or leader. Acquisition professionals monitoring performance of the devel-

CMU/SEI-2013-TN-029 | 27

opment organization view these metrics to identify the need for corrective actions, or to confirm
the effectiveness of actions taken.

Use of story points—or any other measure of size—to understand the pace of work accomplished
is fraught with risk. As discussed previously, a number of things can influence the count of story
points. Individual differences in expertise and experience among team members will greatly influ-
ence the actual time spent to implement a given user story. When monitoring progress, it is im-
portant to distinguish between predictable performance and the rate of delivery—Agile methods
emphasize predictability first.

5.2 Effort and Staffing

Staff effort is primarily of interest to acquisition personnel because labor is typically a predomi-
nant driver of cost for software development contracts. However, it is rare that a detailed analysis
of effort hours expended will be the focus of progress tracking metrics—unless it is used to diag-
nose performance shortfalls, or the contractor is in danger of exceeding the budget. Typically, a
so-called burn rate will be monitored as a matter of routine. Departures from expected rates or
dramatic changes in rate will raise questions.

With a fully integrated team, Agile methods achieve greater velocity in part because the product
does not transition in its intermediate state from one specialty group to another (e.g., requirements
analysts handoff to designers, who handoff to coders, who then hand off to testers). In traditional
models, each handoff increases the opportunity to introduce quality- and schedule-threatening
errors. Furthermore, when the Agile team embodies all of the perspectives that other models treat
as different roles in the process, the real-time interplay and synergy among these perspectives can
be more effective.

The implication for staffing profiles, particularly as it relates to integration and testing activities,
is described in Lapham 2010. The graphic in Figure 14 is copied from that report for emphasis
here.

CMU/SEI-2013-TN-029 | 28

Figure 14: Notional Illustration of Agile Versus Waterfall Integration/Test Efforts

The continuity of staff implied by this discussion becomes an important ingredient to success. The
sensitivity to Brooks’ law11 may be more apparent when looking at the performance of Agile
teams [Brooks 1995]. Considering our discussion of velocity lag in Section 4.2.1.2, consider the
proposition that a development team can be prevented from realizing its full capability by exces-
sive changes in staffing. Because the workload is more effectively shared among team members,
perturbations to the team may also impact their performance more uniformly.

The traditional approach to accounting for effort typically involves tracking a variety of effort
categories (e.g. design, code, test)—essentially presuming a waterfall-like process. Organizations
deploying fully integrated cross-functional teams will most likely find this expectation to be at
odds with the way they operate. The burden to satisfy government stakeholders may fall on con-
tract monitoring professionals who translate the contractor’s data into reports addressing the tradi-
tional cost categories, unless a contractual agreement drives the detailed reporting format. In any
case, it is important to understand this potential for miscommunication.

5.3 Schedule

As described earlier, the intent of Agile development methods is to treat cost and schedule as
fixed parameters, and to manage progress in a way that maximizes the amount of high priority
functionality delivered. This is in contrast to traditional approaches, where schedule and cost are a
consequence of the choices made in the content and quality of what is delivered. Therefore, tradi-
tional metrics focusing on things like schedule performance, or projecting the end of a given ac-
tivity are less meaningful in Agile development approaches.

11 Brooks Law essentially states that adding staff to a late project makes it later.

Integration and Test Effort
Agile Life Cycle

(Notional)

Integration and Test Effort
Waterfall Life Cycle

(Notional)

E
ff

or
t

Iteration

E
ff

or
t

Time

CMU/SEI-2013-TN-029 | 29

Through tracking velocity over sprints and releases, program office staff can have a basis for un-
derstanding the pace of delivery, based (ideally) on a stable cadence of work activities. This can
be used to examine the backlog of work remaining, and establish confidence (or identify risk) in
meeting a set schedule. Taken a step further, an implementation of AgileEVM can also provide
the same types of metrics available in traditional approaches [Sulaiman 2006]. We discuss Ag-
ileEVM in more detail in Section 5.8.

5.4 Quality and Customer Satisfaction

Agile methods place a great deal of emphasis on quality early in the project [Sliger 2008]. Ac-
ceptance criteria (sometimes called “Definition of Done”) play an important role in documenting
complete user stories [Cohn 2004]. The customer typically plays a prominent role in prioritizing
user stories as well as providing timely feedback at the completion of each sprint. Therefore, the
view of quality is not relegated to counting defects or shortfalls in delivered functionality. Metrics
that quantify business value or ”warfighter value” (as one interviewee put it) for each user story
can be collected—based on a customer-assigned number for each story—though this is commonly
skipped in favor of the customer participating as the arbiter of priorities for the content of each
iteration and/or each release. Therefore, each box in the graphic (Figure 14) below has a connec-
tion to a potential quality metric. Metrics collected during events like sprint demos and release
retrospectives may be unique to the use of Agile methods.

Figure 15: Many Quality Touch-Points in Agile Development

The choice to use Agile methods does not negate the traditional role of activities like System
Testing, Formal Qualification Testing, or Customer Acceptance Testing. Defects discovered and
fixed during these testing activities provide a basis for metrics in much the same way they do in
more traditional development approaches. In addition, defects discovered in field use of the sys-
tem warrant the same attention for metrics as we see in traditional approaches. With Agile meth-
ods, these traditional views of quality (i.e., measured defects) can be supplemented with a more
direct measure of customer-perceived value—using customer satisfaction feedback or ratings col-
lected in the various events depicted in Figure 15. Feedback loops specifically designed into the
process serve to focus the development team on quality as seen by the customer.

In the earlier discussion of diagnosing velocity trends, three alternative approaches to defect han-
dling are described. These shape the type of metrics available during development. In addition,
the cumulative flow diagram is a powerful tool for analyzing defect metrics. Examining the flow
of work to discover and correct defects, metrics that reveal cycle time and the backlog of defects
in various states of work form a very powerful early warning indicator for the program.

CMU/SEI-2013-TN-029 | 30

Figure 16 illustrates a fictional analysis for workload relating to defects. The seven states listed on
the right are depicted in colored bands in the cumulative flow diagram on the left.

Figure 16: Defect Analysis Using a Cumulative Flow Diagram

The cumulative flow diagram illustrates the steady growth of deferred defects shown in the purple
band at the center of the diagram (and highlighted by the double-headed arrow). This could be an
indication of an unhealthy tradeoff resulting in an accumulation of deferred work across the 10
reporting periods. Alternatively this pattern could reflect a purposeful strategy for defining a later
release with new feature requests submitted using the defect reporting system. In this case, the
deferrals are needed to initiate the process of writing and reviewing new user stories—a flow of
work we might want to monitor with a separate diagram.

The consistent and narrow bands for “validated” and “assigned” seem to indicate that work flows
through these states more quickly and consistently (than other states). Finally, the number of de-
fects discovered and waiting for further processing appears to be growing as well. Depending on
the number of reporting periods remaining before the next (or final) release, this may represent a
forecast for future trouble as well. Such patterns may lead to technical debt which threatens the
successful realization of the product vision. A full treatment of this subject is beyond the scope of
this technical note, but the subject is addressed well in Philippe Kruchten, Robert L. Nord, Ipek
Ozkaya: Technical Debt: From Metaphor to Theory and Practice. IEEE Software 29(6): 18-21
(2012). For a reference that looks into balancing development tempos from the perspective of ar-
chitecture-related rework, consider: Robert L. Nord, Ipek Ozkaya, Philippe Kruchten, Marco
Gonzalez-Rojas: In Search of a Metric for Managing Architectural Technical Debt.
WICSA/ECSA 2012: 91-100. Finally, for a general reference on using architecture and Agile to-
gether, which includes treatment of technical debt: Stephany Bellomo, Robert L. Nord, Ipek
Ozkaya: A study of enabling factors for rapid fielding: combined practices to balance speed and
stability. ICSE 2013: 982-991

5.5 Cost and Funding

The use of Agile methods does not necessitate a change in the collection mechanisms associated
with the cost of work performed—though such metrics are certainly not a focus of most Agile
methods. However, there are some potentially advantageous structures to employ when setting up

CMU/SEI-2013-TN-029 | 31

funding streams or cost accounts in an acquisition. Acquisition strategies that match the iterative
nature of development with tiered funding—including optional extensions or add-on contract
funding lines—can be used to great advantage when the developer employs Agile methods.

One of our interviewees explained that using an IDIQ contract was ideal in her situation, as this
accommodated the needed flexibility to re-prioritize user stories between iterations. Each delivery
of working software could then be planned and managed distinctly, while maintaining the conti-
nuity with a known provider and staff who have the experience of the previous iterations. The
number of iterations could be increased or decreased without the costs that accompany revisions
to other contract types. Using more than one contractor—to staff various teams in such a flexible
manner—the pattern resembles acquisition of a service rather than acquisition of a whole system.
However, as Lapham 2011 points out, it is important for the acquisition office to maintain cogni-
zance across iterations. The risk of narrowly focusing on only the iteration at hand may cause lo-
cal optimization for individual increments without due attention to the system evolution across
increments.

5.6 Requirements

Traditional approaches to managing software development projects place a premium on stability
of requirements—as an element of risk management. Various techniques for limiting “require-
ments volatility” have been lauded as best practices. In these contexts, the requirements (not un-
like the size estimates) form a surrogate for many things that follow. With that mental model, it is
easy to agree that keeping a requirements baseline “frozen” is helpful to the development team.
However, the hard lessons learned in these contexts led one of our interviewees to observe:

If you’ve been on major contracts before, you know that the requirements are a fight from
start to finish (bounded by cost, schedule, and the decision makers), and the delivered system
is a compromise from the original vision.

This experience reveals the challenge faced when the life cycle management model clashes with
an evolving understanding of the product. Agile methods specifically address this natural tension
through the way customer needs are understood and used to manage the work. At the level of the
software development team (not the ACAT 1 Program level, for example) baselines of user stories
are typically frozen during each short iteration, but changes to requirements and their relative im-
portance are sought at regular intervals during development. Traditional metrics for requirements
volatility do not fit the Agile development model. In fact, metrics that demonstrate orderly and
timely acceptance of change—when correlated with customer satisfaction metrics—form a bene-
ficial feedback loop.

Another consideration for examining requirements metrics derives from the variations in the way
organizations adopt Agile methods. In some environments, requirements in the backlog are essen-
tially feature lists—and do not contain all the necessary detail used by developers to drive imple-
mentation decisions. That information is acquired via direct conversation with users or their sur-
rogates. In other environments, user stories as described by Agile authors are commonplace—
with details including “done criteria” and test cases used to verify the implemented code. Metrics
that reveal the process of maturing the requirements, or “grooming the stories” as it is often
called, provide visibility into the state of the requirements that drive implementation. A cumula-
tive flow diagram may be used to examine changes in the status of requirements, (e.g., how many

CMU/SEI-2013-TN-029 | 32

of the user stories in the backlog are awaiting done criteria to be specified?) As well, the cycle
time between a customer identifying a new story as a top priority, and the inclusion of that story
in a subsequent sprint can be tracked—to gauge responsiveness of the team.12

5.7 Delivery and Progress

Agile methods place a greater emphasis on products delivered, rather than attributes of the process
used to create those products. Measuring durations, costs, and schedule performance—while not
unimportant—tend to receive less attention in Agile approaches. As we explained earlier, counts
of delivered story points (embodied in working software) are the most prominent building block
in Agile metrics.

One popular approach to Agile development is test-driven development [Beck 2003]. In this ap-
proach, rather than developing tests to verify an already built code base, test cases are developed
first (and often automated) and the code is written to pass these tests. In this scenario, technical
progress can be understood through metrics that show the pass/fail outcomes of the tests.

One of the experts interviewed for this paper described a novel implementation of this approach in
a context where the unprecedented engineering challenges being tackled in the program formed
the basis for tracking progress. The engineers were pushing beyond historical performance enve-
lopes in the domain, and carefully crafted tests were used to demonstrate these ambitious perfor-
mance levels. With each passed test, the stakeholders of the program could observe a reduction in
risk to the vision of the program. This ruthless focus on performance by the engineers garnered
much more interest than the quality of documents or status against future milestones. Our inter-
viewee termed this a “risk burn-down” approach.

In all of our interviews of acquisition personnel involved in Agile programs, we heard a consistent
theme of greater involvement in technical decision making. As described in Lapham 2011, acqui-
sition personnel serve as subject matter experts in the programs. These professionals play an im-
portant role in prioritizing work, and providing feedback on the delivered products. This role dif-
fers from what we see in capstone events like preliminary design reviews (PDR) and critical
design reviews (CDR). As described in Section 3.1.2, a leaner (more informal) approach is em-
ployed—one which yields deeper insight about the product.

5.8 Agile Earned Value Management System

The use of earned value management systems (EVMS) in monitoring major DoD development
efforts is well established and required by regulations. Many acquisition professionals have time-
tested approaches for diagnosing the health of the programs they oversee that rely on EVMS.
Sulaiman, Barton, and Blackburn explain how EVMS can be employed using Agile metrics—
chiefly velocity—in the context of monitoring a release in Agile development [Sulaiman 2006].
The authors present equations and use two sample projects to illustrate the equivalence of their
approach to AgileEVM and what they call the burn-down approach.

As discussed in Section 4, an Agile development team’s use of velocity is a cornerstone for plan-
ning and monitoring work. The local nature of this metric warrants caution in its application.

12 A soon-to-be-published technical note in this series will focus on requirements in the Agile and traditional water-

fall worlds.

CMU/SEI-2013-TN-029 | 33

Generalizing across different teams or different project contexts is ill-advised. Sulaiman et.al. are
cautious in their derivation of AgileEVM by scoping its application to an individual team, and an
individual release. This is in contrast to most large-scale implementations of traditional EVMS for
major programs comprised of multiple Integrated Product Teams (IPTs), often working in a varie-
ty of engineering disciplines. AgileEVM, like the velocity metric on which it is based, is a local
metric system. The use of well-established concepts like schedule performance index (to name
only one of many) and the ability to project a release date in a manner similar to traditional
EVMS is advantageous. In settings where a single release is the focus, and the story point estima-
tion is not done by separate IPTs operating independently, AgileEVM can be used.

Critics of EVMS take issue with how it is implemented in some settings, and these criticisms are
instructive in this discussion. First, reliance on an initial requirements baseline to plan a large ef-
fort spanning a long timeline presents a challenge. Requirements and our understanding of them
evolve during the life of the project. AgileEVM addresses this concern well by considering the
timeline of a single release (comprised of multiple sprints). Story point estimates, and the relative
priority of the stories are not likely to change much during the time span of a single release.

Another, perhaps more common criticism of EVMS, centers on the method by which “percent
complete” is calculated at the work item level. The “inch-pebble” assessments of progress on each
of the work items are aggregated to form metrics reflecting status against milestones. Without an
objective basis for counting this progress, projections at higher levels are called into question.
Here again, AgileEVM relies on velocity of a single team—rather than aggregations across differ-
ent teams. This is important because story points (which are the basis for computing velocity) are
the result of relative estimation performed by a single team [Lapham 2011]. However, the reliance
on story points may not be adequate to represent “value” as emphasized in the Agile Manifesto.

Rawsthorne builds on the work of Sulaiman et. al. in suggesting an added perspective on measur-
ing Earned Business Value (EBV). In explaining why this is important, Rawsthorne states:

This is the primary difference between traditional projects and agile ones. In traditional pro-
jects, we are expecting to deliver everything in our requirements document, so all we need to
measure is efficiency and effectiveness of delivery. In other words, EVM metrics are enough
for traditional projects. However, in agile projects, we don’t know exactly what we’re going
to deliver. We’re constantly evaluating to see if we have enough, if we’ve generated suffi-
cient ROI, etc., so we need some way of determining the Business Value of what we’ve got so
far in order to make that determination [Rawsthorne 2012].

The expectation in Agile development is that the development team will reach a point of dimin-
ishing returns before all of the stories have been implemented. As well, the team will need to
spend time on architecture and other important work that may not be visible as important out-
comes from the user’s perspective. Rawsthorne models this with an S-curve, as illustrated below.

CMU/SEI-2013-TN-029 | 34

Figure 17: Accumulation of Earned Business Value [Rawsthorne 2012]

The figure above depicts a slower accumulation of EBV during early sprints, as the team works
on architecturally significant stories that provide a foundation. At the center of the graph above, a
much steeper rate of accumulation is apparent, as the team works to implement the highest value
stories. Then, as the number of high business value stories in the backlog decreases over time, a
point of diminishing returns is reached. It is at this point (at perhaps the eighth or ninth hash mark
on the horizontal axis), before all of the originally projected funding and schedule have been con-
sumed, that the project can be successfully closed and the product delivered. Traditional EVM
metrics might show a projected cost- or schedule-overrun at this point. However, if the project can
be closed before the originally projected end date—because the business value accumulated is
sufficient to meet the operational need for the system—then the actual schedule and cost perfor-
mance may not exceed the original budget.

CMU/SEI-2013-TN-029 | 35

6 Conclusion

It is fitting that the final detailed section of this report (above) ends with a call to add a perspec-
tive on “Business Value” to the traditional earned value management system used in many acqui-
sition settings. If you are an acquisition professional working to monitor the progress of an Agile
contractor, your top priority is to maximize the business value achieved from the contract. You
must bring an understanding of the mission of those who will be served by the software-reliant
system.

The foundation for Agile measurement, described in Section 2, derives from the set of values and
principles tied to the Agile Manifesto. What many readers miss, when they first encounter Agile,
is that the values espoused are not intended to condemn or dismiss the traditional hallmarks of
software development. That is, things like processes and tools, comprehensive documentation,
contract negotiation, and following a plan, are not inherently bad. The point of the Agile mindset
is to maximize focus on individuals and interactions, working software, customer collaboration,
and responding to change. Methods and processes that enable these things have been demonstrat-
ed to result in greater value to the customer. It is not feasible to operate without a process, provide
no documentation, operate without a contract, or forego planning.

In DoD acquisition settings, in particular, there are important enablers to implementing Agile
methods that warrant attention. Advice offered in Section 3 includes:

 If the PMO is doing a request for proposal, no matter which phase, ensure that the RFP con-
tains language that allows the use of Agile.

 Be prepared to mine and effectively use the metrics data that naturally occur in typical Agile
teams.

 Take advantage of the transparency provided in Agile processes. Don’t wait for the metrics to
come to you. Go look at what the Agile team is doing.

 Keep abreast of the changing policy environment that affects metrics collection and use.

There are productive ways to meet typical regulatory requirements levied in the government con-
tracting arena. Agile development organizations are expected to be responsive to customer’s
needs—this is reflected in the values and principles that accompany Agile methods. Advanta-
geous use of tools and automation often provide lean approaches to accomplishing what is need-
ed.

Basic metrics commonly implemented on teams using Agile methods provide a foundation for a
variety of uses. As illustrated in Section 4, there is a well-established knowledge base surrounding
these common metrics. New rules of thumb are needed to use them well, but velocity, sprint burn-
down charts, release burn-up charts, and cumulative flow diagrams provide intuitively appealing
displays of useful progress monitoring metrics.

Finally, putting the “Agile lens” on the traditional categories of progress monitoring metrics (like
size, cost and schedule—among others) requires consideration of the value system underlying
Agile development methods. The development organization’s focus on delivering business value,

CMU/SEI-2013-TN-029 | 36

and the need for active customer participation, can bring clarity that is sometimes hard to find
when using traditional phase-gate-oriented metrics.

CMU/SEI-2013-TN-029 | 37

Appendix A Past Publications in the SEI Agile Series

Below is a list of previous SEI publications in this series.

Considerations for Using Agile in DoD Acquisition
http://www.sei.cmu.edu/library/abstracts/reports/10tn002.cfm

Agile Methods: Selected DoD Management and Acquisition Concerns
http://www.sei.cmu.edu/library/abstracts/reports/11tn002.cfm

A Closer Look at 804: A Summary of Considerations for DoD Program Managers
http://www.sei.cmu.edu/library/abstracts/reports/11sr015.cfm

DoD Information Assurance and Agile: Challenges and Recommendations Gathered Through
Interviews with Agile Program Managers and DoD Accreditation Reviewers
http://www.sei.cmu.edu/library/abstracts/reports/12tn024.cfm

Parallel Worlds: Agile and Waterfall Differences and Similarities
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=62901

http://www.sei.cmu.edu/library/abstracts/reports/10tn002.cfm
http://www.sei.cmu.edu/library/abstracts/reports/11tn002.cfm
http://www.sei.cmu.edu/library/abstracts/reports/11sr015.cfm
http://www.sei.cmu.edu/library/abstracts/reports/12tn024.cfm
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=62901

CMU/SEI-2013-TN-029 | 38

CMU/SEI-2013-TN-029 | 39

References/Bibliography

URLs are valid as of the publication date of this document.

[Agile Alliance 2001]
Agile Alliance. History: The Agile Manifesto.2001. http://agilemanifesto.org/history.html

[Alleman 2003]
Alleman, G. B., Henderson, M., & Seggelke, R. “Making Agile Development Work in a
Government Contracting Environment: Measuring Velocity with Earned Value,” in Agile
Development Conference, June 25-28, 2003.
http://www.informatik.uni-trier.de/~ley/db/conf/agiledc/agiledc2003.html

[Anderson 2010]
Anderson, David J. & Reinertsen, Donald G. Kanban: Successful Evolutionary Change for Your
Technology Business. Blue Hole Press, 2010.

[Brooks 1995]
Brooks, Frederick P. Jr. The Mythical Man-Month: Essays on Software Engineering, Anniversary
Edition (2nd Edition). 1995.

[Coelho 2012]
Coelho, Evita & Basu, Anirban. “Effort Estimation in Agile Software Development using Story
Points.” International Journal of Applied Information Systems (IJAIS) 3 (7): August 2012.

[Cohn 2004]
Cohn, Mike. User Stories Applied: For Agile Software Development. Pearson Education, 2004.

[Cohn 2006]
Cohn, Mike. Agile Estimating and Planning. Pearson Education, 2006.

[DoD 2007]
Department of Defense (DoD). Department of Defense Directive (DODD) 5000.01. November
2007. https://acc.dau.mil/CommunityBrowser.aspx?id=37343

[EIA-748]
ANSI EIA 748 Intent Guide: A Standard for Earned Value Management. 2005.
http://www.srs.gov/general/EFCOG/02GovtReferences/03NDIAANSI/NDIAIntentGuide.pdf

[Fleming 2000]
Fleming, C.D. & Koppelman, Joel M. Earned Value Project Management – 2nd Edition. Project
Management Institute, 2000.

http://agilemanifesto.org/history.html
http://www.informatik.uni-trier.de/~ley/db/conf/agiledc/agiledc2003.html
https://acc.dau.mil/CommunityBrowser.aspx?id=37343
http://www.srs.gov/general/EFCOG/02GovtReferences/03NDIAANSI/NDIAIntentGuide.pdf

CMU/SEI-2013-TN-029 | 40

[Hartman 2006]
Hartman, Deborah & Dymond, Robin. “Appropriate Agile Measurement: Using Metrics and Di-
agnostics to Deliver Business Value.” Proceedings of the Agile Conference. Minneapolis, MN,
July 2006. IEEE Computer Society Press, 2006.

[Lapham 2010]
Lapham, Mary Ann; & Williams, Ray; & Hammons, Charles (Bud); & Burton, Daniel; & Schen-
ker, Alfred. Considerations for Using Agile in DoD Acquisition (CMU/SEI-2010-TN-002). Soft-
ware Engineering Institute, Carnegie Mellon University, 2010.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9273

[Lapham 2011]
Lapham, Mary Ann; & Garcia-Miller, Suzanne; & Adams, Lorraine; & Brown, Nanette; &
Hackemack, Bart; & Hammons, Charles (Bud); & Levine, Linda; & Schenker, Alfred. Agile
Methods: Selected DoD Management and Acquisition Concerns (CMU/SEI-2011-TN-002). Soft-
ware Engineering Institute, Carnegie Mellon University, 2011.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9769

[Rawsthorne 2012]
Rawsthorne, Dan. Monitoring Scrum Projects with AgileEVM and Earned Business Value Metrics
(EBV). 2012.
http://www.collab.net/resources/whitepaper_MonitoringScrumProjectsAgileEVM

[Reinertsen 2009]
Reinertsen, Donald. “The Principles of Product Development Flow: Second Generation Lean
Product Development.” Celeritas Publishing, pp. 71–72. 2009. ISBN 978-1-935401-00-1

[Sliger 2008]
Sliger, Michele & Broderick, Stacia. The Software Project Manager's Bridge to Agility.
Pearson Education, 2008.

[Sulaiman 2006]
Sulaiman, Tamara, Barton, Brent, & Blackburn, Thomas. “AgileEVM – Earned Value Manage-
ment in Scrum Projects.” Presented at Agile2006, 23-28 July 2006.

[USAF 2008]
United States Air Force. United States Air Force Weapon Systems Software Management Guide-
book, Version 1 (Abridged). 2008

[USA 2011]
United States Army. Army Regulation (AR) 70-1 Army Acquisition Policy, Sections 7-12 and 7-
13. 2011.

[Womack 1996]
Womack, James P. & Jones, Daniel T. Lean Thinking. Simon and Schuster, 1996.

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9273
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9769
http://www.collab.net/resources/whitepaper_MonitoringScrumProjectsAgileEVM

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

January 2014

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Agile Metrics:
Progress Monitoring of Agile Contractors

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Will Hayes, Suzanne Miller, Mary Ann Lapham, Eileen Wrubel, Timothy Chick

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2013-TN-029

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

n/a

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This technical note is one in a series of publications from the Software Engineering Institute intended to aid United States Department of
Defense acquisition professionals in the use of Agile software development methods. As the prevalence of suppliers using Agile meth-
ods grows, these professionals supporting the acquisition and maintenance of software-reliant systems are witnessing large portions of
the industry moving away from so-called “traditional waterfall” life cycle processes. The existing infrastructure supporting the work of ac-
quisition professionals has been shaped by the experience of the industry—which up until recently has tended to follow a waterfall pro-
cess. The industry is finding that the methods geared toward legacy life cycle processes need to be realigned with new ways of doing
business. This technical note aids acquisition professionals who are affected by that realignment.

14. SUBJECT TERMS

Agile, waterfall, metrics

15. NUMBER OF PAGES

58

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Acknowledgments
	Executive Summary
	Abstract
	1	How to Use this Technical Note
	2	Foundations for Agile Metrics
	3	Selected Measurement Considerations in DoD Acquisition
	4	Agile Metrics
	5	Progress Monitoring in Acquisitions Using Agile Methods
	6	Conclusion
	Appendix A	Past Publications in the SEI Agile Series
	References/Bibliography

